
NIST SP 800-90 DRAFT December 2005

 Recommendation for Random
Number Generation Using
Deterministic Random Bit
Generators

NIST Special Publication 800-90

DRAFT (December 2005)

C O M P U T E R S E C U R I T Y

Elaine Barker and John Kelsey

1

NIST SP 800-90 DRAFT December 2005

 Abstract

This Recommendation specifies mechanisms for the generation of random bits using
deterministic methods. The methods provided are based on either hash functions, block
cipher algorithms or number theoretic problems.

KEY WORDS: deterministic random bit generator (DRBG); entropy; hash function;
random number generator

2

NIST SP 800-90 DRAFT December 2005

Table of Contents
1 Authority... 9

2 Introduction.. 9

3 Scope.. 10

4 Terms and Definitions ... 11

5 Symbols and Abbreviated Terms... 16

6 Document Organization .. 17

7 DRBG Functional Model.. 19

7.1 Entropy Input.. 19
7.2 Other Inputs.. 19
7.3 The Internal State ... 20
7.4 The DRBG Functions ... 20
7.5 Health Tests.. 20

8. DRBG Concepts and General Requirements .. 21

8.1 DRBG Functions .. 21
8.2 DRBG Instantiations .. 21
8.3 Internal States .. 21
8.4 Security Strengths Supported by an Instantiation ... 22
8.5 DRBG Boundaries.. 23
8.6 Seeds... 24

8.6.1 Seed Construction for Instantiation.. 24
8.6.2 Seed Construction for Reseeding ... 25
8.6.3. Entropy Requirements for the Entropy Input... 25
8.6.4 Seed Length... 26
8.6.5 Entropy Input Source.. 26
8.6.6 Entropy Input and Seed Privacy.. 26
8.6.7 Nonce ... 26
8.6.8 Reseeding .. 27
8.6.9 Seed Use .. 27

3

NIST SP 800-90 DRAFT December 2005

8.6.10 Seed Separation .. 27
8.7 Other Inputs to the DRBG .. 27

8.7.1 Personalization String .. 28
8.7.2 Additional Input... 28

8.8 Prediction Resistance and Backtracking Resistance .. 28

9 DRBG Functions.. 30

9.1 Instantiating a DRBG ... 30
9.2 Reseeding a DRBG Instantiation.. 33
9.3 Generating Pseudorandom Bits Using a DRBG ... 35

9.3.1 The Generate Function... 35
9.3.2 Reseeding at the End of the Seedlife.. 37
9.3.3 Handling Prediction Resistance Requests... 38

9.4 Removing a DRBG Instantiation... 38
9.5 Self-Testing of the DRBG .. 39

9.5.1 Testing the Instantiate Function.. 39
9.5.2 Testing the Generate Function .. 40
9.5.3 Testing the Reseed Function... 40
9.5.4 Testing the Uninstantiate Function... 41

9.6 Error Handling .. 41
9.6.1 Errors Encountered During Normal Operation .. 41
9.6.2 Errors Encountered During Self-Testing.. 41

10 DRBG Algorithm Specifications... 42

10.1 Deterministic RBGs Based on Hash Functions.. 42
10.1.1 Hash_DRBG... 43

10.1.1.1 Hash_DRBG Internal State... 43
10.1.1.2 Instantiation of Hash_DRBG.. 44
10.1.1.3 Reseeding a Hash_DRBG Instantiation.. 45
10.1.1.4 Generating Pseudorandom Bits Using Hash_DRBG 46

10.1.2 HMAC_DRBG (...) .. 48
10.1.2.1 HMAC_DRBG Internal State... 48

4

NIST SP 800-90 DRAFT December 2005

10.1.2.2 The Update Function (Update) ... 49
10.1.2.3 Instantiation of HMAC_DRBG.. 50
10.1.2.4 Reseeding an HMAC_DRBG Instantiation 50
10.1.2.5 Generating Pseudorandom Bits Using HMAC_DRBG 51

10.2 DRBGs Based on Block Ciphers .. 53
10.2.1 CTR_DRBG .. 53

10.2.1.1 CTR_DRBG Internal State .. 55
10.2.1.2 The Update Function (Update) .. 56
10.2.1.3 Instantiation of CTR_DRBG... 57

10.2.1.3.1 The Process Steps for Instantiation When Full
Entropy is Available for the Entropy Input, and a
Derivation Function is Not Used................................ 57

10.2.1.3.2 The Process Steps for Instantiation When a
Derivation Function is Used....................................... 58

10.2.1.4 Reseeding a CTR_DRBG Instantiation ... 59
10.2.1.4.1 The Process Steps for Reseeding When Full Entropy

is Available for the Entropy Input, and a Derivation
Function is Not Used... 59

10.2.1.4.2 The Process Steps for Reseeding When a Derivation
Function is Used.. 60

10.2.1.5 Generating Pseudorandom Bits Using CTR_DRBG.................... 60
10.3 Deterministic RBG Based on Number Theoretic Problems..................................... 64

10.3.1 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG) 64
10.3.1.1 Dual_EC_DRBG Internal State... 66
10.3.1.2 Instantiation of Dual_EC_DRBG.. 67
10.3.1.3 Reseeding of a Dual_EC_DRBG Instantiation 68
10.3.1.4 Generating Pseudorandom Bits Using Dual_EC_DRBG 69

10.4 Auxilliary Functions... 71
10.4.1 Derivation Function Using a Hash Function (Hash_df) 71
10.4.2 Derivation Function Using a Block Cipher Algorithm

(Block_Cipher_df) ... 72
10.4.3 Block_Cipher_Hash Function... 74

11 Assurance .. 76

5

NIST SP 800-90 DRAFT December 2005

11.1 Minimal Documentation Requirements ... 76
11.2 Implementation Validation Testing .. 77
11.3 Health Testing .. 77

11.3.1 Overview .. 77
11.3.2 Known Answer Testing .. 78

Appendix A: (Normative) Application-Specific Constants............... 79

A.1 Constants for the Dual_EC_DRBG... 79
A.1.1 Curve P-256.. 79
A.1.2 Curve P-384.. 80
A.1.3 Curve P-521.. 80

A.2 Using Alternative Points in the Dual_EC_DRBG() .. 81
A.2.1 Generating Alternative P,Q.. 81
A.2.2 Additional Self-testing Required for Alternative P,Q..................................... 81

Appendix B : (Normative) Conversion and Auxilliary Routines..... 83
B.1 Bitstring to an Integer.. 83
B.2 Integer to a Bitstring .. 83
B.3 Integer to an Octet String.. 83
B.4 Octet String to an Integer .. 84
B.5 Converting Random Numbers from/to Random Bits ... 84

B.5.1 Converting Random Bits into a Random Number 84
B.5.1.1 The Simple Discard Method... 85
B.5.1.2 The Complex Discard Method ... 85
B.5.1.3 The Simple Modular Method ... 86
B.5.1.4 The Complex Modular Method.. 86

B.5.2 Converting a Random Number into Random Bits .. 87
B.5.2.1 The No Skew (Variable Length Extraction) Method........................ 87
B.5.2.2 The Negligible Skew (Fixed Length Extraction) Method 88

Appendix C: (Normative) Entropy and Entropy Sources 90

C.1 What is Entropy ?... 90
C.2 Entropy Source .. 90

6

NIST SP 800-90 DRAFT December 2005

C.3 Entropy Assessment ... 91
C.4 Coin Flipping Entropy Source Example .. 94

Appendix D: (Normative) Constructing a Random Bit Generator (RBG)
from Entropy Sources and DRBG Mechanisms.. 95

D.1 Entropy Input for a DRBG ... 95
D.2 Availability of Entropy Input for a DRBG... 96

D.2.1 Using a Readily Available Entropy Input Source... 96
D.2.2 No Readily Available Entropy Input Source... 97

D.3 Persistence Considerations.. 97

Appendix E: (Informative) Security Considerations when Extracting Bits
in the Dual_EC_DRBG (...) .. 99

E.1 Potential Bias Due to Modular Arithmetic for Curves Over Fp 99
E.2 Adjusting for the missing bit(s) of entropy in the x coordinates. 99

Appendix F: (Informative) Example Pseudocode for Each DRBG................. 102

F.1 Hash_DRBG Example .. 102
F.1.1 Instantiation of Hash_DRBG.. 103
F.1.2 Reseeding a Hash_DRBG Instantiation.. 104
F.1.3 Generating Pseudorandom Bits Using Hash_DRBG 105

F.2 HMAC_DRBG Example .. 108
F.2.1 Instantiation of HMAC_DRBG.. 108
F.2.2 Generating Pseudorandom Bits Using HMAC_DRBG 110

F.3 CTR_DRBG Example Using a Derivation Function .. 111
F.3.1 The Update Function .. 112
F.3.2 Instantiation of CTR_DRBG Using a Derivation Function 112
F.3.3 Reseeding a CTR_DRBG Instantiation Using a Derivation Function 114
F.3.4 Generating Pseudorandom Bits Using CTR_DRBG.................................. 115

F.4 CTR_DRBG Example Without a Derivation Function... 117
F.4.1 The Update Function .. 118
F.4.2 Instantiation of CTR_DRBG Without a Derivation Function..................... 118
F.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation Function... 118
F.4.4 Generating Pseudorandom Bits Using CTR_DRBG.................................. 119

7

NIST SP 800-90 DRAFT December 2005

F.5 Dual_EC_DRBG Example.. 119
F.5.1 Instantiation of Dual_EC_DRBG.. 120
F.5.2 Reseeding a Dual_EC_DRBG Instantiation.. 121
F.5.3 Generating Pseudorandom Bits Using Dual_EC_DRBG 122

Appendix G: (Informative) DRBG Selection .. 125

G.1 Hash_DRBG.. 125
G.2 HMAC_DRBG.. 126
G.3 CTR_DRBG ... 127
G.4 DRBGs Based on Hard Problems... 128

Appendix H : (Informative) References.. 130

8

NIST SP 800-90 DRAFT December 2005

 Random Number Generation Using
Deterministic Random Bit Generators

1 Authority

This document has been developed by the National Institute of Standards and Technology
(NIST) in furtherance of its statutory responsibilities under the Federal Information
Security Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum
requirements, for providing adequate information security for all agency operations and
assets, but such standards and guidelines shall not apply to national security systems. This
recommendation is consistent with the requirements of the Office of Management and
Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as
analyzed in A-130, Appendix IV: Analysis of Key Sections. Supplemental information is
provided in A-130, Appendix III.

This recommendation has been prepared for use by Federal agencies. It may be used by
nongovernmental organizations on a voluntary basis and is not subject to copyright.
(Attribution would be appreciated by NIST.)

Nothing in this Recommendation should be taken to contradict standards and guidelines
made mandatory and binding on federal agencies by the Secretary of Commerce under
statutory authority. Nor should this Recommendation be interpreted as altering or
superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or
any other federal official.

Conformance testing for implementations of the deterministic random bit generators
(DRBGs) that are specified in this Recommendation will be conducted within the
framework of the Cryptographic Module Validation Program (CMVP), a joint effort of
NIST and the Communications Security Establishment of the Government of Canada. An
implementation of a DRBG must adhere to the requirements in this Recommendation in
order to be validated under the CMVP. The requirements of this Recommendation are
indicated by the word “shall.”

2 Introduction

This Recommendation specifies techniques for the generation of random bits that may then be
used directly or converted to random numbers when random values are required by
applications using cryptography.

There are two fundamentally different strategies for generating random bits. One strategy is to
produce bits non-deterministically, where every bit of output is based on a physical process
that is unpredictable; this class of random bit generators (RBGs) is commonly known as non-

9

NIST SP 800-90 DRAFT December 2005

deterministic random bit generators (NRBGs)1. The other strategy is to compute bits
deterministically using an algorithm; this class of RBGs is known as Deterministic Random
Bit Generators (DRBGs)2. This Recommendation will specify Approved DRBG mechanisms.

A DRBG uses an algorithm that produces a sequence of bits from an initial value that is
determined by a seed. Once the seed is provided and the initial value determined, the
DRBG is said to be instantiated. Because of the deterministic nature of the process, a
DRBG is said to produce pseudorandom bits, rather than random bits. The seed used to
instantiate the DRBG must contain sufficient entropy to provide assurance of randomness.
If the seed is kept secret, and the algorithm is well designed, the bits output by the DRBG
will be unpredictable, up to the security strength of the DRBG algorithm. However, the
security provided by an RBG that uses a DRBG is a system implementation issue; both the
DRBG and its source of entropy must be considered when determining whether the RBG is
appropriate for use by consuming applications. Therefore, in this Recommendation the
acronym RBG will be used to mean a DRBG and its source of entropy.

3 Scope

This Recommendation includes:

1. Requirements for the use of deterministic random bit generator mechanisms,

2. Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

3. Implementation issues, and

4. Assurance considerations.

This Recommendation specifies several diverse DRBG mechanisms, all of which provided
acceptable security when this Recommendation was published. However, in the event that
new attacks are found on a particular class of DRBG mechanisms, a diversity of approved
mechanisms will allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, e.g.,
communicating entities may use different DRBG mechanisms without affecting their ability
to communicate. Therefore, an entity may choose a single appropriate DRBG mechanism
for their consuming applications; see Annex G for a discussion of DRBG selection.

The precise structure, design and development of a random bit generator is outside the
scope of this Recommendation.

10

1 NRBGs have also been called True Random Number (or Bit) Generators or Hardware Random Number
Generators.
2 DRBGS have also been called Pseudorandom Bit Generators.

NIST SP 800-90 DRAFT December 2005

This Recommendation provides preliminary guidance on the selection of an entropy source
and the construction of an RBG from an entropy source and an Approved DRBG.
Additional guidance is under development in these areas.

4 Terms and Definitions

For the purposes of this part of the Recommendation, the following terms and definitions
apply.

Algorithm A clearly specified mathematical process for computation; a
set of rules that, if followed, will give a prescribed result.

Approved FIPS approved, NIST Recommended and/or validated by the
Cryptographic Module Validation Program (CMVP).

Backtracking Resistance The assurance that the output sequence from an RBG remains
indistinguishable from an ideal random sequence even to an
attacker who compromises the RBG in the future, up to the
claimed security strength of the RBG. For example, an RBG
that allowed an attacker to "backtrack" from the current
working state to generate prior outputs would not provide
backtracking resistance. The complementary assurance is
called Prediction Resistance.

Biased A value that is chosen from a sample space is said to be biased
if one value is more likely to be chosen than another value.
Contrast with unbiased.

Bitstring A bitstring is an ordered sequence of 0’s and 1’s. The leftmost
bit is the most significant bit of the string and is the newest bit
generated. The rightmost bit is the least significant bit of the
string.

Bitwise Exclusive-Or An operation on two bitstrings of equal length that combines
corresponding bits of each bitstring using an exclusive-or
operation.

Block Cipher A symmetric key cryptographic algorithm that transforms a
block of information at a time using a cryptographic key. For
a block cipher algorithm, the length of the input block is the
same as the length of the output block.

Consuming Application The application (including middle ware) that uses random
numbers or bits obtained from an Approved random bit
generator.

11

NIST SP 800-90 DRAFT December 2005

Cryptographic Key (Key) A parameter that determines the operation of a cryptographic
function such as:

1. The transformation from plaintexttociphertext and vice
versa,

2. The synchronized generation of keying material,

3. A digital signature computation or verification.

Deterministic Algorithm An algorithm that, given the same inputs, always produces the
same outputs.

Deterministic Random
Bit Generator (DRBG)

An RBG that uses a deterministic algorithm to produce a
pseudorandom sequence of bits from a secret initial value
called a seed along with other possible inputs. A DRBG is
often called a Pseudorandom Number (or Bit) Generator.

DRBG Boundary A conceptual boundary that is used to explain the operations
of a DRBG and its interaction with and relation to other
processes.

Entropy A measure of the disorder, randomness or variability in a
closed system. The entropy of X is a mathematical measure of
the amount of information provided by an observation of X.
As such, entropy is always relative to an observer and his or
her knowledge prior to an observation. Also, see min-entropy.

Entropy Input The input to an RBG of a string of bits that contains entropy,
that is, the entropy input is digitized and is assessed. For an
NRBG, this is obtained from an entropy source. For a DRBG,
this is included in the seed material.

Entropy Source A source of unpredictable data. There is no assumption that
the unpredictable data has a uniform distribution. The entropy
source includes a noise source, such as thermal noise or hard
drive seek times; a digitalization process; an assessment
process; an optional conditioning process and health tests.
Thus, the entropy source provides bitstrings containing
entropy and an assessment of the entropy that is provided.

Equivalent Process Two processes are equivalent if, when the same values are
input to each process, the same output is produced.

12

NIST SP 800-90 DRAFT December 2005

Exclusive-or A mathematical operation, symbol ⊕, defined as:

0 ⊕ 0 = 0
0 ⊕ 1 = 1
1 ⊕ 0 = 1
1 ⊕ 1 = 0.

Equivalent to binary addition without carry.

Full Entropy Each bit of a bitstring with full entropy is unpredictable (with
a uniform distribution) and independent of every other bit of
that bitstring.

Hash Function A (mathematical) function that maps values from a large
(possibly very large) domain into a smaller range. The
function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any
input that maps to any pre-specified output;

2. (Collision free) It is computationally infeasible to find
any two distinct inputs that map to the same output.

Health Testing Testing within an implementation immediately prior to or
during normal operation to determine that the implementation
continues to perform as implemented and as validated (if
implementation validation was performed).

Implementation An implementation of an RBG is a cryptographic device or
portion of a cryptographic device that is the physical
embodiment of the RBG design, for example, some code
running on a computing platform.

Implementation Testing
for Validation

Testing by an independent and accredited party to ensure that
an implemention of this Recommendation conforms to the
specifications of this Recommendation.

Instantiation of an RBG An instantiation of an RBG is a specific, logically
independent, initialized RBG. One instantiation is
distinguished from another by a handle (e.g., an identifying
number).

Internal State The collection of stored information about an RBG
instantiation. This can include both secret and non-secret
information.

Key See Cryptographic Key.

13

NIST SP 800-90 DRAFT December 2005

Min-entropy The worst-case (i.e., the greatest lower bound) measure of
uncertainty for a random variable.

Non-Deterministic
Random Bit Generator
(Non-deterministic RBG)
(NRBG)

An RBG that produces output that is fully dependent on some
unpredictable physical source that produces entropy. Contrast
with a DRBG. Other names for non-deterministic RBGs are
True Random Number (or Bit) Generators and, simply,
Random Number (or Bit) Generators.

Personalization String An optional string of bits that is combined with a secret input
and a nonce to produce a seed.

Prediction Resistance Assurance that a compromise of the DRBG internal state has
no effect on the security of future DRBG outputs. That is, an
adversary who is given access to all of the output sequence
after the compromise cannot distinguish it from random; if the
adversary knows only part of the future output sequence, he
cannot predict any bit of that future output sequence that he
has not already seen. The complementary assurance is called
Backtracking Resistance.

Pseudorandom A process (or data produced by a process) is said to be
pseudorandom when the outcome is deterministic, yet also
effectively random as long as the internal action of the process
is hidden from observation. For cryptographic purposes,
“effectively” means “within the limits of the intended
cryptographic strength.”

Pseudorandom Number
Generator

See Deterministic Random Bit Generator.

Public Key In an asymmetric (public) key cryptosystem, that key of an
entity’s key pair that is publicly known.

Public Key Pair In an asymmetric (public) key cryposystem, the public key
and associated private key.

Random Number For the purposes of this Recommendation, a value in a set that
has an equal probability of being selected from the total
population of possibilities and, hence, is unpredictable. A
random number is an instance of an unbiased random variable,
that is, the output produced by a uniformly distributed random
process.

Random Bit Generator
(RBG)

A device or algorithm that outputs a sequence of binary bits
that appears to be statistically independent and unbiased.

14

NIST SP 800-90 DRAFT December 2005

Random Number
Generator (RNG)

A device or algorithm that can produce a sequence of random
numbers that appears to be from an ideal random distribution.

Reseed To aquire additional bits with sufficient entropy for the
desired security strength

Security Strength A number associated with the amount of work (that is, the
number of operations) that is required to break a cryptographic
algorithm or system; a security strength is specified in bits and
is a specific value from the set (112, 128, 192, 256). The
amount of work needed is 2security_strength.

Seed Noun : A string of bits that is used as input to a Deterministic
Random Bit Generator (DRBG). The seed will determine a
portion of the internal state of the DRBG, and its entropy must
be sufficient to support the security strength of the DRBG.

Verb : To aquire bits with sufficient entropy for the desired
security strength. These bits will be used as input to a DRBG
to determine a portion of the initial internal state. Also see
reseed.

Seedlife The length of the seed period.

Seed Period The period of time between initializing a DRBG with one seed
and reseeding that DRBG with another seed.

Sequence An ordered set of quantities.

Shall Used to indicate a requirement of this Recommendation.

Should Used to indicate a highly desirable feature for a DRBG that is
not necessarily required by this Recommendation.

String See Bitstring.

Unbiased A value that is chosen from a sample space is said to be
unbiased if all potential values have the same probability of
being chosen. Contrast with biased.

Unpredictable In the context of random bit generation, an output bit is
unpredictable if an adversary has only a negligible advantage
(that is, essentially not much better than chance) in predicting
it correctly.

15

NIST SP 800-90 DRAFT December 2005

Working State A subset of the internal state that is used by a DRBG to
produce pseudorandom bits at a given point in time. The
working state (and thus, the internal state) is updated to the
next state prior to producing another string of pseudorandom
bits.

5 Symbols and Abbreviated Terms

The following abbreviations are used in this document:

Abbreviation Meaning

AES Advanced Encryption Standard.

DRBG Deterministic Random Bit Generator.

ECDLP Elliptic Curve Discrete Logarithm Problem.

FIPS Federal Information Processing Standard.

HMAC Keyed-Hash Message Authentication Code.

NRBG Non-deterministic Random Bit Generator.

RBG Random Bit Generator.

TDEA Triple Data Encryption Algorithm.

The following symbols are used in this document.

16

Symbol Meaning

+ Addition

⎡X⎤

Ceiling: the smallest integer ≥ X. For
example, ⎡ ⎤5 = 5, and = 6. ⎡ ⎤3.5

⎣X⎦ The largest integer less than or equal to X.
For example, ⎣5⎦ = 5, and ⎣5.3⎦ = 5.

X ⊕ Y Bitwise exclusive-or (also bitwise addition
mod 2) of two bitstrings X and Y of the
same length.

X || Y Concatenation of two strings X and Y. X and
Y are either both bitstrings, or both octet
strings.

NIST SP 800-90 DRAFT December 2005

17

Symbol Meaning

gcd (x, y) The greatest common divisor of the integers
x and y.

len (a) The length in bits of string a.

x mod n The unique remainder r (where 0 ≤ r ≤ n-1)
when integer x is divided by n. For example,
23 mod 7 = 2.

Used in a figure to illustrate a "switch"
between sources of input.

{a1, ...ai} The internal state of the DRBG at a point in
time. The types and number of the ai
depends on the specific DRBG.

0x A string of x zero bits.

6 Document Organization

This Recommendation is organized as follows:

⎯ Section 7 provides a functional model for a DRBG and discusses the major DRBG
components.

⎯ Section 8 provides concepts and general requirements for the implementation and
use of a DRBG.

⎯ Section 9 specifies the DRBG functions introduced in Section 8. These functions
use the DRBG algorithms specified in Section 10.

⎯ Section 10 specifies Approved DRBG algorithms. Algorithms have been specified
that are based on the hash functions specified in FIPS 180-2 (Secure Hash
Standard), block cipher algorithms specified in FIPS 197 and NIST Special
Publication 800-67 (AES and TDEA, respectively), and a number theoretic problem
that is expressed in elliptic curve technology.

⎯ Section 11 addresses assurance issues for DRBGs, including documentation
requirements, implementation validation and health testing,

This Recommendation also includes the following appendices:

⎯ Appendix A specifies additional DRBG-specific information.

⎯ Appendix B provides conversion routines.

⎯ Appendix C provides guidance on entropy and entropy sources.

NIST SP 800-90 DRAFT December 2005

⎯ Appendix D provides guidance on the construction of a random bit generator from
an entropy source and a DRBG.

⎯ Appendix E discusses security considerations when extracting bits in the
Dual_EC_DRBG.

⎯ Appendix F provides example pseudocode for each DRBG.

⎯ Appendix G provides a discussion on DRBG selection.

⎯ Appendix H provides references.

18

NIST SP 800-90 DRAFT December 2005

7 DRBG Functional Model

Figure 1 provides a functional model of DRBGs. The components of this model are
discussed in the following subsections.

Internal State Generate
Function

Error
State

Instantiate
Function

Reseed
Function

Pseudorandom Output
Error
State

Additional Input

Health Tests

Entropy Input Nonce
Personalization

String

Uninstantiate
Function

7.1 Entropy Input

Figure 1: DRBG Functional Model

The entropy input is provided to a DRBG for the seed (see Section 8.6). The entropy input
and the seed shall be kept secret. The secrecy of this information provides the basis for the
security of the DRBG. At a minimum, the entropy input shall provide the requested amount
of entropy for a DRBG. Appropriate sources for the entropy input are discussed in
Appendix C.

Ideally, the entropy input will be full entropy; however, the DRBGs have been specified to
allow for some bias in the entropy input by allowing the length of the entropy input to be
longer than the required amount of entropy (expressed in bits). The entropy input can be
defined to be a variable length (within limits), as well as fixed length. In all cases, the
DRBG expects that when entroy input is requested, the returned bitstring will contain at
least the requested amount of entropy. Additional entropy beyond the amount requested is
not required, but is desirable.
7.2 Other Inputs

19

DRBG itself does not rely on the secrecy of this information. The information should be

Other information may be obtained by a DRBG as input. This information may or may not
be required to be kept secret by a consuming application; however, the security of the

NIST SP 800-90 DRAFT December 2005

20

 may be required, and if used, it is combined with the

ongly advises the insertion of a personalization string during

e

eeding and when pseudorandom bits are

The internal state is the memory of the DRBG and consists of all of the parameters,

nd/or

The DRBG functions handle the DRBG’s internal state. The DRBGs in this

with a nonce

2. rate function generates pseudorandom bits upon request, using the current

 3. the current

4. nction zeroizes (i.e., erases) the internal state.
7.5

Health testing is used to determine that the DRBG continues to function correctly. The

checked for validity when possible.

During DRBG instantiation, a nonce
entropy input to create the initial DRBG seed. The nonce and its use are discussed in
Sections 8.6.1 and 8.6.7.

This Recommendation str
DRBG instantiation; when used, the personalization string is combined with the entropy
bits and a nonce to create the initial DRBG seed. The personalization string shall be uniqu
for all instantiations of the same DRBG type (e.g., HMAC_DRBG). See Section 8.7.1 for
additional discussion on personalization strings.

Additional input may also be provided during res
requested. See Section 8.7.2 for a discussion of this input.
7.3 The Internal State

variables and other stored values that the DRBG uses or acts upon. The internal state
contains both administrative data (e.g., the security level) and data that is acted upon a
modified during the generation of pseudorandom bits (i.e., the working state). The contents
of the internal state is dependent on the specific DRBG and includes all information that is
required to produce the pseudorandom bits from one request to the next.
7.4 The DRBG Functions

Recommendation have four separate functions (exclusive of health tests):

1. The instantiate function acquires entropy input and may combine it
and a personalization string to create a seed from which the initial internal state is
created.

The gene
internal state, and generates a new internal state for the next request.

The reseed function acquires new entropy input and combines it with
internal state and any additional input that is provided to create a new seed and a
new internal state.

The uninstantiate fu
 Health Tests

health tests are discussed in Sections 9.5 and 11.3.

NIST SP 800-90 DRAFT December 2005

8. DRBG Concepts and General Requirements

8.1 DRBG Functions

A DRBG requires instantiate, uninstantiate, generate, and testing functions. A DRBG may
also include a reseed function. A DRBG shall be instantiated prior to the generation of
output by the DRBG. These functions are specified in Section 9.
8.2 DRBG Instantiations

Figure 2: DRBG Instantiation

A DRBG may be used to obtain
pseudorandom bits for different
purposes (e.g., DSA private keys
and AES keys) and may be
separately instantiated for each
purpose.

A DRBG is instantiated using a seed
and may be reseeded; when
reseeded, the seed shall be different
than the seed used for instantiation.
Each seed defines a seed period for
the DRBG instantiation; an
instantiation consists of one or more
seed periods that begin when a new
seed is acquired (see Figure 2).
8.3 Internal States

During instantiation, an initial internal state is derived from the seed. The internal state for
an instantiation includes:

1. Working state:

a. One or more values that are derived from the seed and become part of the
internal state; these values must usually remain secret, and

b. A count of the number of requests or blocks produced since the instantiation
was seeded or reseeded.

2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. A DRBG
implementation may be designed to handle multiple instantiations. Each DRBG
instantiation shall have its own internal state. The internal state for one DRBG
instantiation shall not be used as the internal state for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide

21

NIST SP 800-90 DRAFT December 2005

new pseudorandom bits. A DRBG may also be implemented to transition in response to
internal or external events (e.g., system interrupts) or to transition continuously (e.g.,
whenever time is available to run the generator).
8.4 Security Strengths Supported by an Instantiation

The DRBGs specified in this Recommendation support four security strengths: 112, 128,
192 or 256 bits. The actual security strength supported by a given instantiation depends on
the DRBG implementation and on the amount of entropy provided to the instantiate
function. Note that the security strength actually supported by a particular instantiation
could be less than the maximum security strength possible for that DRBG implementation
(see Table 1). For example, a DRBG that is designed to support a maximum security
strength of 256 bits could be instantiated to support only a 128-bit security strength if the
additional security provided by the 256-bit security strength is not required.
Table 1: Possible Instantiated Security Strengths

Maximum Designed
Security Strength

112 128 192 256

Possible Instantiated
Security Strengths

112 112, 128 112, 128, 192 112, 128, 192,
256

A security strength for the instantiation is requested by a consuming application during
instantiation, and the instantiate function obtains the appropriate amount of entropy for the
requested security strength. Any security strength may be requested, but the DRBG will
only be instantiated to one of the four security strengths above, depending on the DRBG
implementation. A requested security strength that is below the 112-bit security strength or
is between two of the four security strengths will be instantiated to the next highest level
(e.g., a requested security strength of 96 bits will result in an instantiation at the 112-bit
security strength).

Following instantiation, requests can be made to the generate function for pseudorandom
bits. For each generate request, a security strength to be provided for the bits is requested.
Any security strength can be requested up to the security strength of the instantiation, e.g.,
an instantiation could be instantiated at the 128-bit security strength, but a request for
pseudorandom bits could indicate that a lesser security strength is actually required for the
bits to be generated. The generate function checks that the requested security strength does
not exceed the security strength for the instantiation. Assuming that the request is valid, the
requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a security strength of 112
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to
be instantiated to support the 256-bit security strength.

22

NIST SP 800-90 DRAFT December 2005

8.5 DRBG Boundaries

As a convenience, this Recommendation uses the notion of a “DRBG boundary” to explain
the operations of a DRBG and its interaction with and relation to other processes; a DRBG
boundary contains all DRBG functions and internal states required for a DRBG. A DRBG
boundary is entered via the DRBG’s public interfaces, which are made available to
consuming applications.

Within a DRBG boundary,

1. The DRBG internal state and the operation of the DRBG functions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary. The
internal state shall be contained within the DRBG boundary and shall not be
accessed by non-DRBG functions or other instantiations of that or other DRBGs.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cryptographic primitive as long as the DRBG’s internal
state and the DRBG functions are not affected.

A DRBG’s functions may be contained within a single device, or may be distributed across
multiple devices (see Figures 3 and 4).
Figure 3 depicts a DRBG for which all
functions are contained within the same
device. Figure 4 provides an example of
DRBG functions that are distributed across
multiple devices. In this latter case, each
device has a DRBG sub-boundary that
contains the DRBG functions implemented
on that device, and the boundary around the
entire DRBG consists of the aggregation of
sub-boundaries providing the DRBG
functionality. The use of distributed DRBG
functions may be convenient for restricted
environments (e.g., smart card applications)
in which the primary use of the DRBG does
not require repeated use of the instantiate or
reseed functions.

DRBG Boundary

Entropy
Input

States

Instantiate

Reseed
Instantiation

Request Bits

Testing
Procedure

Uninstantiate
DRBG Uninstantiate

Procedure

Test
DRBG

Generate
Pseudorandom
Bits Procedure

Reseed
DRBG

Procedure

Instantiate
DRBG

Procedure

Figure 3: DRBG Functions within a
Single Device

Although the entropy input is shown in the figures as originating outside the DRBG
boundary, it may originate from within the boundary.

23

NIST SP 800-90 DRAFT December 2005

Each DRBG boundary or sub-boundary shall contain a test function to test the “health” of
other DRBG functions within that boundary. In addition, each boundary or sub-boundary
shall contain an uninstantiate function in order to perform and/or react to health testing.

Figure 4: Distributed DRBG Functions

DRBG Sub-Boundary (Instantiate) DRBG Sub-Boundary (Generate)

Instantiate
Function

Protected State

Entropy Input

Test
Function

DRBG Boundary

Uninstantiate
Function Function

Test
Function

Uninstantiate
Function
Generate

When DRBG functions are distributed, appropriate mechanisms shall be used to protect
the confidentiality and integrity of the internal state or parts of the internal state that are
transferred between the distributed DRBG sub-boundaries. The confidentiality and
integrity mechanisms and security strength shall be consistent with the data to be protected
by the DRBG’s consuming application (see SP 800-57).
8.6 Seeds

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and
determine the initial internal state.

Reseeding is a means of restoring the secrecy of the output of the DRBG if a seed or the
internal state becomes known. Periodic reseeding is a good way of addressing the threat of
either the DRBG seed, entropy input or working state being compromised over time. In
some implementations (e.g., smartcards), an adequate reseeding process may not be
possible. In these cases, the best policy might be to replace the DRBG, obtaining a new
seed in the process (e.g., obtain a new smart card).

The seed and its use by a DRBG shall be generated and handled as specified in the
following subsections.
8.6.1 Seed Construction for Instantiation

24

determine a seed for instantiation consists of entropy input, a nonce and an optional
Figure 5 depicts the seed construction process for instantiation. The seed material used to

NIST SP 800-90 DRAFT December 2005

25

e
nce

n

ce

Figure 6 depicts the seed construction

 in the

y

, a

quirements for the Entropy Input

The entropy input shall have entropy that is equal to or greater than the security strength of

ng it

personalization string. Entropy input
shall always be used in the construction
of a seed; requirements for the entropy
input are discussed in Section 8.6.3.
Except for the case noted below, a nonc
shall be used; requirements for the no
are discussed in Section 8.6.7. This
Recommendation also advises the
inclusion of a personalization string;
requirements for the personalizatio
string are discussed in Section 8.7.1.

Depending on the DRBG and the sour
of the entropy input, a derivation function
may be required to derive a seed from the
seed material. When full entropy input is readily available, the DRBG based on block
cipher algorithms (see Section 10.2) may be implemented without a derivation function.
When implemented in this manner, a nonce (as shown in Figure 5) is not used. Note,
however, that the personalization string could contain a nonce, if desired.
8.6.2 Seed Construction for

Figure 5: Seed Construction for Instantiation

Reseeding

process for reseeding an instantiation.
The seed material for reseeding
consists of a value that is carried
internal state3, new entropy input and,
optionally, additional input. The
internal state value and the entrop
input are required; requirements for
the entropy input are discussed in
Section 8.6.3. Requirements for the
additional input are discussed in
Section 8.7.2. As in Section 8.6.1
derivation function may be required
for reseeding. See Section 8.6.1 for
further guidance.
8.6.3. Entropy Re

Figure 6: Seed Construction for Reseeding

the instantiation. Additional entropy may be provided in the nonce or the optional
personalization string during instantiation, or in the additional input during reseedi
generation, but this is not required. The use of more entropy than the minimum value will

3 See each DRBG specification for the value that is used.

NIST SP 800-90 DRAFT December 2005

26

e

ore

The minimum length of the seed depends on the DRBG and the security strength required

The source of the entropy input shall be either:

us forming a chain of at least two DRBGs; the highest-

3. source.

Further discussion about entropy and entropy sources is provided in Appendix C;

The entropy input and the resulting seed shall be handled in a manner that is consistent

ed to

A nonce may be required in the construction of a seed during instantation in order to

For cas me as the

its of security. When

offer a security “cushion”. This may be useful if the assessment of the entropy provided in th
entropy input is incorrect. Having more entropy than the assessed amount is acceptable;
having less entropy than the assessed amount could be fatal to security. The presence of m
entropy than is required, especially during the instantiatiation, will provide a higher level of
assurance than the minimum required entropy.
8.6.4 Seed Length

by the consuming application. See Section 10.
8.6.5 Entropy Input Source

1. An Approved NRBG,

2. An Approved DRBG, th
level DRBG in the chain shall be seeded by an Approved NRBG or an entropy
source, or

An entropy

discussion on RBG construction is provided in Appendix D.
8.6.6 Entropy Input and Seed Privacy

with the security required for the data protected by the consuming application. For
example, if the DRBG is used to generate keys, then the entropy inputs and seeds us
generate the keys shall (at a minimum) be protected as well as the key.
8.6.7 Nonce

provide a security cushion to block certain attacks. The nonce shall be either:

a. A random value with at least (security_strength/2) bits of entropy,

b. A non-random value that is expected to repeat no more often than a
(security_strength/2)-bit random string would be expected to repeat.

e a, the nonce may be acquired from the same source and at the same ti
entropy input. In this case, the seed could be considered to be constructed from an “extra
strong” entropy input and the optional personalization string, where the entropy for the
entropy input is equal to or greater than (3/2 security_strength) bits.

The nonce is required for instantiation to provide security_strength b
a DRBG is instantiated many times without a nonce, a compromise may become more
likely. In some consuming applications, a single DRBG compromise may reveal long-term

NIST SP 800-90 DRAFT December 2005

secrets (e.g., a compromise of the DSA per-message secret reveals the signing key).
8.6.8 Reseeding

27

Generating too many outputs from a seed (and other input information) may provide

ks,

i.e., the length of the seed period); the maximum seedlife

n for the

 instantiation. However, reseeding is

d Use

A seed that is used to initialize one instantiation of a DRBG shall not be intentionally used

Seeds used by DRBGs and the entropy input used to create those seeds shall not be used

Other input may be provided during DRBG instantiation, pseudorandom bit generation and

 value of the input may or may

ut

sufficient information for successfully predicting future outputs unless prediction
resistance is provided (see Section 8.8). Periodic reseeding will reduce security ris
reducing the likelihood of a compromise of the data that is protected by cryptographic
mechanisms that use the DRBG.

Seeds shall have a finite seedlife (
is dependent on the DRBG used. Reseeding is accomplished by 1) an explicit reseeding of
the DRBG by the consuming application, or 2) by the generate function when prediction
resistance is requested (see Section 8.8) or the limit of the seedlife is reached.

Reseeding of the DRBG shall be performed in accordance with the specificatio
given DRBG. The DRBG reseed specifications within this Recommendation are designed
to produce a new seed that is determined by both the old seed and newly-obtained entropy
input that will support the desired security strength.

An alternative to reseeding is to create an entirely new
preferred over creating a new instantiation. If there is an undetected failure in the entropy
input source, a reseeded DRBG instantiation will still retain any previous entropy, whereas
a re-instantiated DRBG may not have sufficient entropy to support the requested security
strength.
8.6.9 See

to reseed the same instantiation or used as a seed for another DRBG instantiation. Note
that a DRBG does not provide output until a seed is available, and the internal state has
been initialized (see Section 10).
8.6.10 Seed Separation

for other purposes (e.g., domain parameter or prime number generation).
8.7 Other Inputs to the DRBG

reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input and a nonce to
derive a seed (see Section 8.6.1). When pseudorandom bits are requested and when
reseeding is performed, additional input may be provided.

Depending on the method for acquiring the input, the exact
not be known to the user or consuming application. For example, the input could be
derived directly from values entered by the user or consuming application, or the inp

NIST SP 800-90 DRAFT December 2005

28

.,

String

During instantiation, a personalization string should be used to derive the seed (see

should

 serial numbers,

ation,

words,

er-device

• mps,

• Network addresses,

ues for this specific

• s,

ers,

8.7.2 d

During each request for bits from a DRBG and during reseeding, the insertion of additional

ing

e
e

d Backtracking Resistance

Figure 7 depicts the sequence of DRBG internal states that result from a given seed. Some

mise occurs at Statex, where Statex contains both secret and public

could be derived from information introduced by the user or consuming application (e.g
from timing statistics based on key strokes), or the input could be the output of another
DRBG or an NRBG.
8.7.1 Personalization

Section 8.6.1). The intent of a personalization string is to differentiate this DRBG
instantiation from all others that might ever be created. The personalization string
be set to some bitstring that is as unique as possible, and may include secret information.
The value of any secret information contained in the personalization string should be no
greater than the claimed strength of the DRBG, as the DRBG's cryptographic mechanisms
will protect this information from disclosure. Good choices for the personalization string
contents include:

• Device

• Public keys,

• User identific

• Private keys,

• PINs and pass

• Secret per-module or p
values,

Timesta

• Special secret key val
DRBG instantiation,

Application identifier

• Protocol version identifi

• Random numbers, and

• Nonces.

Ad itional Input

input is allowed. This input is optional, and the ability to enter additional input may or may
not be included in an implementation. Additional input may be either secret or publicly
known; its value is arbitrary, although its length may be restricted, depending on the
implementation and the DRBG. The use of additional input may be a means of provid
more entropy for the DRBG internal state that will increase assurance that the entropy
requirements are met. If the additional input is kept secret and has sufficient entropy, th
input can provide more assurance when recovering from the compromise of the seed or on
or more DRBG internal states.
8.8 Prediction Resistance an

subset of bits from each internal state are used to generate pseudorandom bits upon request
by a user. The following discussions will use the figure to explain backtracking and
prediction resistance.

Suppose that a compro

NIST SP 800-90 DRAFT December 2005

information.

29

Backtracking Resistance: B ompromise of the DRBG

 Statex. Backtracking resistance means that:

ered,

Backtra DRBG algorithm is a one-

acktracking resistance means that a c
Figure 7: Sequence of DRBG States

internal state has no effect on the security of prior outputs. That is, an adversary who is
given access to all of that prior output sequence cannot distinguish it from random; if the
adversary knows only part of the prior output, he cannot determine any bit of that prior
output sequence that he has not already seen.

For example, suppose that an adversary knows

a. The output bits from State1 to Statex-1 cannot be distinguished from random.

b. The prior internal state values themselves (State1 to Statex-1) cannot be recov
given knowledge of the secret information in Statex.

cking resistance can be provided by ensuring that the
way function. All DRBGs in this Recommendation have been designed to provide
backtracking resistance.

 Prediction Resistance: Prediction resistance means that a compromise of the DRBG
ary

it

 means that:

b. selves (Statex+1 and forward) cannot be

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded

th)

y the

internal state has no effect on the security of future DRBG outputs. That is, an advers
who is given access to all of the output sequence after the compromise cannot distinguish
from random; if the adversary knows only part of the future output sequence, he cannot
predict any bit of that future output sequence that he has not already seen.

For example, suppose that an adversary knows Statex: Prediction resistance

a. The output bits from Statex+1 and forward cannot be distinguished from an ideal
random bitstring by the adversary.

The future internal state values them
predicted, given knowledge of Statex.

between DRBG requests. That is, an amount of entropy that is sufficient to support the
security strength of the DRBG (i.e., an amount that is at least equal to the security streng
must be provided to the DRBG in a way that ensures that knowledge of the current DRBG
internal state does not allow an adversary any useful knowledge about future DRBG
internal states or outputs. Prediction resistance is provided in this Recommendation b
use of a prediction resistance flag.

NIST SP 800-90 DRAFT December 2005

9 DRBG Functions

30

The DRBG functions in this Recommendation are specified as an algorithm and an
“envelope” of pseudocode around that algorithm. The pseudocode in the envelopes
(provided in this section) checks the input parameters, obtains input not provided by the
input parameters, accesses the appropriate DRBG algorithm and handles the internal state.
A function need not be implemented using such envelopes, but the function shall have
equivalent functionality.

In the specifications of this Recommendation, a Get_entropy_input pseudo-function is
used for convenience. This function is not fully specified in this Recommendation, but has
the following meaning:

Get_entropy_input: A function that is used to obtain entropy input. The function call
is:

(status, entropy_input) = Get_entropy_input (min_entropy, min_ length,
max_ length)

which requests a string of bits (entropy_input) with at least min_entropy bits of
entropy. The length for the string shall be equal to or greater than min_length bits, and
less than or equal to max_length bits. A status code is also returned from the function.

Note that an implementation may choose to define this functionality differently; for
example, for many of the DRBGs, the min_length = min_entropy for the
Get_entropy_input function, in which case, the second parameter could be omitted.
9.1 Instantiating a DRBG

A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function:

1. Checks the validity of the input parameters,

2. Determines the security strength for the DRBG instantiation,

3. Determines any DRBG specific parameters (e.g., elliptic curve domain parameters),

4. Obtains entropy input with entropy sufficient to support the security strength,

5. Obtains the nonce (if required),

6. Determines the initial internal state using the instantiate algorithm,

7. Returns a state_handle for the internal state to the consuming application (see
below).

Let working_state be the working state for the particular DRBG, and let min_length, max_
length, and highest_supported_security_strength be defined for each DRBG (see Section
10).

NIST SP 800-90 DRAFT December 2005

31

ent process shall be used to instantiate a DRBG.

Input from a consuming application for instantiation:
the

ot

ce_flag: Indicates whether or not prediction resistance may be

ation must determine whether or not prediction resistance may be

implementation. If the prediction_resistance_flag is not needed (i.e., because
predict
be omi
state in instantiate process.

 be

eter

ersonalization string.

 shall not be provided
onsuming application as an input

tantiate request.

he

 that if a random value is used as
ngle

 first
r would be adjusted to include the entropy for the nonce (i.e.,

The following or an equival

1. requested_instantiation_security_strength: A requested security strength for
instantiation. DRBG implementations that support only one security strength do n
require this parameter; however, any consuming application using that DRBG
implementation must be aware of this limitation.

2. prediction_resistan
required by the consuming application during one or more requests for
pseudorandom bits. DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user of a
consuming applic
required by the consuming application before electing to use such a DRBG

ion resistance is always or never performed), then the input parameter may
tted, and the prediction_resistance_flag may be omitted from the internal
 step 11 of the

3. personalization_string: An optional input that provides personalization information
(see Sections 8.6.1 and 8.7.1). The maximum length of the personalization string
(max_personalization_string_length) is implementation dependent, but shall
less than or equal to the maximum length specified for the given DRBG (see
Section 10). If a personalization string will never be used, then the input param
and step 3 of the instantiate process may be omitted, and process step 9 may be
modified to omit the p

Required information not provided by the consuming application during
instantiation:

Comment: This input
by the c
parameter during the ins

1. entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be less than or equal to t
specified maximum length for the selected DRBG (see Section 10).

2. nonce: A nonce as specified in Section 8.6.7. Note
the nonce, the entropy_input and nonce could be acquired using a si
Get_entropy_input call (see step 6 of the instantiate process); in this case, the
paramete
security_strength would be increased by at least security_strength/2), process step
8 would be omitted, and the nonce would be omitted from the parameter list in
process step 9.

NIST SP 800-90 DRAFT December 2005

Output to a consuming application after instantiation:

32

tion. The status will indicate
an

2. r this instantiation in subsequent

Inform

The
info

Instan
t

1.
 return an ERROR_FLAG.

3. h,

4.

equired by
the Dual_EC_DRBG when multiple curves

5. Using security_strength, select appro

6. n_length,

8.
ility of the

algorithm in Section 10 to obtain values for
the initial working_state.

1. status: The status returned from the instantiate func
SUCCESS or an ERROR. If an ERROR is indicated, either no state_handle or
invalid state_handle shall be returned. A consuming application should check the
status to determine that the DRBG has been correctly instantiated.

state_handle: Used to identify the internal state fo
calls to the generate, reseed, uninstantiate and test functions.

ation retained within the DRBG boundary after instantiation:

 internal state for the DRBG, including the working_state and administrative
rmation (see Sections 8.3 and 10).

tiate Process:
Comment: Check the validity of the inpu
parameters.

If requested_instantiation_security_strength >
highest_supported_security_strength, then

2. If prediction_resistance_flag is set, and prediction resistance is not supported, then
return an ERROR_FLAG.

If the length of the personalization_string > max_personalization_string_lengt
return an ERROR_FLAG.

Set security_strength to the nearest security strength greater than or equal to
requested_instantiation_security_strength.

Comment: The following step is r

are available (see Section 10.3.1.2).
Otherwise, the step should be omitted.

priate DRBG parameters.

Comment: Obtain the entropy input.

 (status, entropy_input) = Get_entropy_input (security_strength, mi
max_length).

7. If an ERROR is returned in step 6, return a CATASTROPHIC_ERROR_FLAG.

Obtain a nonce. Comment: This step shall include any
appropriate checks on the acceptab
nonce. See Section 8.6.7.

Comment: Call the appropriate instantiate

NIST SP 800-90 DRAFT December 2005

33

ropy_input, nonce,

10.

11. or the internal

e Section 10), and set

The reseeding of an instantiation is not requi
comsuming application and implementation rform this process. Reseeding
wil dorandom bits. Reseeding may be:

•

m

• sufficient entropy is available).

If a reseed capability is not available, a new
Section 9.1).

The reseed function:

2. Obtains entropy input with sufficient th, and

Let
max_ length

The following or an equivalent process shall

Input from a consuming application for re
1) state_handle: A pointer or index that

This value was returned from the inst
2) additional_input: An optional input. e additional_input

9. initial_working_state = Instantiate_algorithm (ent
personalization_string).

 Get a state_handle for a currently empty internal state. If an unused internal state
cannot be found, return an ERROR_FLAG.

 Set the internal state indicated by state_handle to the initial values f
state (i.e., set the working_state to the values returned as initial_working_state in
step 9 and any other values required for the working_state (se
the administrative information to the appropriate values (e.g., the values of
security_strength and the prediction_resistance_flag).

12. Return SUCCESS and state_handle.
9.2 Reseeding a DRBG Instantiation

red, but is recommended whenever a
are able to pe

l insert additional entropy into the generation of pseu

explicitly requested by a consuming application,

• performed when prediction resistance is requested by a consuming application,

• triggered by the generate function when a predetermined number of pseudorando
outputs have been produced or a predetermined number of generate requests have
been m d of the seedlife), or ade (i.e., at the en

triggered by external events (e.g., whenever

DRBG instantiation may be created (see

1. Checks the validity of the input parameters,

 entropy to support the security streng

3. Using the reseed algorithm, combines the current working state with the new
entropy input and any additional input to determine the new working state.

working_state be the working state for the particular DRBG, and let min_length and
 be defined for each DRBG (see Section 10).

 be used to reseed the DRBG instantiation.

seeding:
 indicates the internal state to be reseeded.
antiate function specified in Section 9.1.
The maximum length of th

NIST SP 800-90 DRAFT December 2005

34

e less than
value specified for the given DRBG (see Section 10). If

Req

put

tropy. The maximum length of the
shall be less than or equal to the

selected DRBG (see Section 10).

and

 will indicate SUCCESS or
an ERROR.

Info
Rep

Reseed
and

, obtain the current internal state. If state_handle indicates an
sed internal state, return an ERROR_FLAG.

dditional_input_length, return an

.

(max_additional_input_length) is implementation dependent, but shall b
or equal to the maximum
additional_input will never be used, then the input parameter and step 2 of the
reseed process may be omitted, and step 5 may be modified to remove the
additional_input from the parameter list.

uired information not provided by the consuming application during reseeding:
Comment: This input shall not be provided
by the consuming application in the in
parameters.

1. entropy_input: Input bits containing en
entropy_input is implementation dependent, but
specified maximum length for the

2. Internal state values required by the DRBG for reseeding for the working_state
administrative information, as appropriate.

Output to a consuming application after reseeding:
1. status: The status returned from the function. The status

rmation retained within the DRBG boundary after reseeding:

laced internal state values (i.e., the working_state).

 Process:
Comment: Get the current internal state
check the input parameters.

1. Using state_handle
invalid or unu

2. If the length of the additional_input > max_a
ERROR_FLAG.

Comment: Obtain the entropy input.

3. (status, entropy_input) = Get_entropy_input (security_strength, min_length,
max_length).

4. If an ERROR is returned in step 3, return a CATASTROPHIC_ERROR_FLAG

Comment: Get the new working_state using
the appropriate reseed algorithm in Section
10.

5. new_working_state = Reseed_algorithm (working_state, entropy_input,
additional_input).

6. Replace the working_state in the internal state indicated by state_handle with the

NIST SP 800-90 DRAFT December 2005

35

7.
9.3 G

1. Checks the validity of the input param

2. Calls the reseed function to obtain su py if the instantiation needs
iction

4.

consuming appication.
9.3.

Let utlen be the length of the output block of the cryptographic primitive (see Section 10).

random bits.

Inp
le: A pointer or index that indicates the internal state to be used.

2. requested_number_of_bits: The num
the generate function. The max_numb plementation

 not require this parameter; however, any consuming
application using that DRBG implem on.

to
RBGs that are implemented to always or never support prediction

the application before electing to use

If prediction resistance is never provided, then the
input parameter and step 5 of the gen ay be omitted, and step 7 may

values of new_working_state obtained in step 5.

Return SUCCESS.
enerating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding. The
generate function:

eters.

fficient entro
additional entropy because the end of the seedlife has been reached or pred
resistance is required; see Sections 9.3.2 and 9.3.3 for more information on
reseeding at the end of the seedlife and on handling prediction resistance requests.

3. Generates the requested pseudorandom bits using the generate algorithm.

Updates the working state.

5. Returns the requested pseudorandom bits to the
1 The Generate Function

o

The following or an equivalent process shall be used to generate pseudo

ut from a consuming application for generation:
1. state_hand

ber of pseudorandom bits to be returned from
er_of_bits_per_request is im

dependent, but shall be less than or equal to the value provided in Section 10 for a
specific DRBG.

3. requested_security_strength: The security strength to be associated with the
requested pseudorandom bits. DRBG implementations that support only one
security strength do

entation must be aware of this limitati

4. prediction_resistance_request: Indicates whether or not prediction resistance is
be provided. D
resistance do not require this parameter. However, the user of a consuming
application must determine whether or not prediction resistance may be required by

 such a DRBG implementation.

prediction_resistance_request
erate process m

be modified to omit the check for the prediction_resistance_request.

If prediction resistance is always performed, then the prediction_resistance_request

NIST SP 800-90 DRAFT December 2005

36

teps 7 and 8 are replaced by:

state_handle, additional_input).

us.

pseudorandom_bits, working_state) = Generate_algorithm
ts).

eter

5.

on 10).
input parameter, process step 4,

input input parameter in step 8 may be omitted.
Req neration:

 uired for generation for the working_state and

e status will indicate SUCCESS

Inform
Rep

Ge a
ck the

1.

2.

3. If requested_security_strength > the security_strength

4.

5.

input parameter and step 5 may be omitted, and s

status = Reseed (

If status indicates an ERROR, then return stat

Using state_handle, obtain the new internal state.

(status,
(working_state, requested_number_of_bi

Note that if additional_input is never provided, then the additional_input param
in the Reseed call above may be omitted.

additional_input: An optional input. The maximum length of the additional_input
(max_additional_input_length) is implementation dependent, but shall be less than
or equal to the specified maximum length for the selected DRBG (see Secti
If additional_input will never be used, then the
step 7.4 and the additional_

uired information not provided by the consuming application during ge
1. Internal state values req

administrative information, as appropriate.

Output to a consuming application after generation:
1. status: The status returned from the function. Th

or an ERROR.

2. pseudorandom_bits: The pseudorandom bits that were requested.

ation retained within the DRBG boundary after generation:
laced internal state values (i.e., the working_state).

ner te Process:
Comment: Get the internal state and che
input parameters.

Using state_handle, obtain the current internal state for the instantiation. If
state_handle indicates an invalid or unused internal state, then return an
ERROR_FLAG.

If requested_number_of_bits > max_number_of_bits_per_request, then return an
ERROR_FLAG.

 indicated in the internal
state, then return an ERROR_FLAG.

If the length of the additional_input > max_additional_input_length, then return an
ERROR_FLAG.

If prediction_resistance_request is set, and prediction_resistance_flag is not set,

NIST SP 800-90 DRAFT December 2005

then return an ERROR_FLAG.

37

6. Cle

7. If r ce_request is set, then

d the instantiation (see

7.1 nput).

nternal state.

te

m
additional_input).

the requested bits can be
g

9 d_required_flag.

9

ate_handle with

ESS and pseudorandom_bits.

Implementation notes

ar the reseed_required_flag.

eseed_required_flag is set, or if prediction_resistan

Comment: Resee
Section 9.2).

status = Reseed (state_handle, additional_i

7.2 If status indicates an ERROR, then return status.

7.3 Using state_handle, obtain the new i

7.4 additional_input = the Null string.

7.5 Clear the reseed_required_flag.

Comment: Request the generation of
pseudorandom_bits using the appropria
generate algorithm in Section 10.

8. (status, pseudorandom_bits, new_working_state) = Generate_algorith
(working_state, requested_number_of_bits,

9. If status indicates that a reseed is required before
enerated, then

.1 Set the resee

.2 Go to step 7.

10. Replace the old working_state in the internal state indicated by st
the values of new_working_state.

11. Return SUCC

:

If a reseed capability is not available, then st removed; and step 9 is
rep

9. e

ation that the DRBG instantiation can no longer be used.
9.3.

Wh p
checks whether or not a reseed is required
state (see Section 8.3 ined reseed interval for the DRBG

eps 6 and 7 may be
laced by:

If status indicates that a reseed is required before the requested bits can b
generated, then

9.1 status = Uninstantiate (state_handle).

9.2 Return an indic
2 Reseeding at the End of the Seedlife

en seudorandom bits are requested by a consuming application, the generate function
by comparing the counter within the internal

) against a predeterm

NIST SP 800-90 DRAFT December 2005

38

implem enerate function (see Section 9.3.1) as follows:

_flag.

 step
7 would be skipped unless prediction
application. For the purposes of this e nce
was not requested.

c. whether a reseed is
turned.

d. ithm. If the status does
generate process continues with step 10.

e. quired, then the reseed_required_flag is set,

f. The substeps in step 7 are executed. T
additional_input provided by the con

e
uired_flag is

g. orithm is called (again) in step 8, the check of the returned status is
p 10 is then executed.

9.3.3 H l Resistance Requests

Wh
resistance, the generate function specified in Section 9.3.1 checks that the instantiation
allo e generate process); clears the
reseed_required_flag ed in this case); executes the

ting in a reseed and a new internal state for the instantiation;
not

nd continues with step 10.
9.4

The internal state for an instantiation may need to be “released” by erasing the contents of
the inte

1.

entation. This is specified in the g

a. Step 6 clears the reseed_required

b. Step 7 checks the value of the reseed_required_flag. At this time, it is clear, so
 resistance was requested by the consuming
xplanation, assume that prediction resista

Step 8 calls the Generate_algorithm, which will check
required. If it is required, an appropriate status will be re

Step 9 checks the status returned by the Generate_algor
not indicate that a reseed is required, the

If the status indicates that a reseed is re
and processing continues by going back to step 7.

he reseed function will be called; any
suming application in the generate request

will be used during reseeding. Then the new values of the internal state are
acquired, any additional_input provided by the consuming application in th
generate request is replaced by a Null string, and the reseed_req
cleared.

The generate alg
made in step 9, and (presumably) ste
and ing Prediction

en pseudorandom bits are requested by a consuming application with prediction

ws prediction resistance requests (see step 5 of th
 (even though the flag won’t be us

substeps of step 7, resul
obtains pseudorandom bits (see step 8); passes through step 9, since another reseed will
be required; a

Removing a DRBG Instantiation

rnal state. The uninstantiate function:

Checks the input parameter for validity.

2. Empties the internal state.

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a
DRBG instantiation:

NIST SP 800-90 DRAFT December 2005

Input from a consuming application for uninstantiation:

39

icates the internal state to be “released”.

Ou

1.

Inf

An

Un

2. state_handle.

9.5 S

A DRB ues
to operate as designed and im
DRBG boundary (or sub-boundary) shall test each DRBG function within that boundary.
No

Errors occurring during testing
d the DRBG re-instantiated before

ch

tantiations shall be tested as

sentative fixed values and lengths of the
ent y (if allowed) shall be used; the value of
the e intentionally reused during normal
operations (either by the instantiate or the reseed functions). Error handling shall also be

e expected results, and errors are handled
correctly, then the instantiate function may be used to instantiate using the tested values of

1. state_handle: A pointer or index that ind

tput to a consuming application after uninstantiation:

status: The status returned from the function. The status will indicate SUCCESS or
ERROR_FLAG.

ormation retained within the DRBG boundary after uninstantiation:

 empty internal state.

instantiate Process:

1. If state_handle indicates an invalid state, then return an ERROR_FLAG.

Erase the contents of the internal state indicated by

3. Return SUCCESS.
elf-Testing of the DRBG

G shall perform self testing to obtain assurance that the implementation contin
plemented (health testing). The testing function(s) within a

te that this may require the creation and use of an instantiation for testing purposes only.

shall be perceived as complete DRBG failures. The
condition causing the failure shall be corrected an
requesting pseudorandom bits (also, see Section 9.6)
9.5.1 Testing the Instantiate Function

Known-answer tests on the instantiate function shall be performed prior to creating ea
operational instantiation. However, if several instantiations are performed in quick
succession using the same input parameters, then the testing may be reduced to testing only
prior to creating the first instantiation using that parameter set until such time as the
succession of instantiations is completed. Thereafter, other ins
specified above.

The security_strength and prediction_resistance_flag to be used in the operational
invocation shall be used during the test. Repre

rop _input, nonce and personalization_string
entropy_input used during testing shall not b

tested, including whether or not the instantiate function handles an error from the entropy
input source correctly.

If the values used during the test produce th

NIST SP 800-90 DRAFT December 2005

security_strength and prediction_resistance_flag.

40

An .

Kn
function and at reasonable intervals defined by the implementer. The implementer shall

The known-answer tests be performed for each implemented security_strength.
Representative fixed values and lengths for the requested_number_of_bits and

ed) and the working state of the internal state value (see Sections
available, then each combination of

the g shall
be , and testing shall
inc n order to check
tha

e oduce the expected results, and errors are handled
correctly, then the generate function may be used during normal operations.

rnal

ate of the internal state value shall be used
e g shall also be tested, including an error in

d

d as follows:

uld provide a capability to test the reseed function on demand.

 implementation should provide a capability to test the instantiate function on demand
9.5.2 Testing the Generate Function

own-answer tests shall be performed on the generate function before the first use of the

document the intervals and provide a justification for the selected intervals.

shall

additional_input (if allow
8.3 and 10) shall be used. If prediction resistance is

security_strength, prediction_resistance_request and prediction_resistance_fla
tested. The error handling for each input parameter shall also be tested
lude setting the reseed_counter to meet or exceed the reseed_interval i
t the implementation is reseeded or that the DRBG is “shut down”, as appropriate.

If th values used during the test pr

Bits generated during health testing shall not be output as pseudorandom bits.

An implementation should provide a capability to test the generate function on demand.
9.5.3 Testing the Reseed Function

A known-answer test of the reseed function shall use the security_strength in the inte
state of the instantiation to be reseeded. Representative values of the entropy_input and
additional_input (if allowed) and the working st
(see S ctions 8.3 and 10). Error handlin
obtaining the entropy_input (e.g., the entropy_input source is broken).

If the values used during the test produce the expected results, and errors are handle
correctly, then the reseed function may be used to reseed the instantiation.

The reseed function may be called every time that the generate function is called if
prediction resistance is available, and considerbly less frequently otherwise. Self-testing
shall be performe

1. When prediction resistance is available in an implementation, the reseed function
shall be tested whenever the generate function is tested (see above).

2. When prediction resistance is not available in an implementation, the reseed
function shall be tested whenever the reseed function is invoked and before the
reseed is performed on the operational instantiation.

An implementation sho

NIST SP 800-90 DRAFT December 2005

9.5.4 Testing the Uninstantiate Function

41

a handling is performed correctly, and the internal
state has been zeroized.

 9.4) and for
e

f a

 user
y allows the

 an

ors indicated by the
CATASTROPHIC_ERROR_FLAG in the pseudocode), the DRBG shall not produce

rected,
produce

n

The uninstantiate function shall be tested whenever other functions are tested. Testing
shall ttempt to demonstrate that error

9.6 Error Handling

The expected errors are indicated for each DRBG function (see Sections 9.1 -
the derivation functions in Section 10.4. The error handling routines should indicate th
type of error.
9.6.1 Errors Encountered During Normal Operation

Many errors during normal operation may be caused by a consuming application’s
improper DRBG request; these errors are indicated by “ERROR_FLAG” in the
pseudocode. In these cases, the consuming application user is responsible for correcting
the request within the limits of the user’s organizational security policy. For example, i
failure indicating an invalid requested security strength is returned, a security strength
higher than the DRBG or the DRBG instantiation can support has been requested. The
may reduce the requested security strength if the organization’s security polic
information to be protected using a lower security strength, or the user shall use
appropriately instantiated DRBG.

For catastrophic errors (i.e., those err

further output until the source of the error is corrected, and the DRBG is re-instantiated.
9.6.2 Errors Encountered During Self-Testing

During self-testing, all unexpected behavior is catastrophic. The DRBG shall be cor
and the DRBG shall be re-instantiated before the DRBG can be used to
pseudorandom bits. Examples of unexpected behavior include:

• A test deliberately inserts an error, and the error is not detected, or

• An incorrect result is returned from the instantiate, reseed or generate function tha
was expected.

NIST SP 800-90 - Hash_DRBG DRAFT December 2005

10 DRBG Algorithm Specifications

42

s

 the consuming application’s requirements for
 conducted in order to select an appropriate DRBG. A detailed

D ns

sh-
proved

ied in Section 10.1.2.

ach hash function is provided in

ved hash function.
Table 2: Definitions for Hash-Based DRBGs

Several DRBGs are specified in this Recommendation. The selection of a DRBG depend
on several factors, including the security strength to be supported and what cryptographic
primitives are available. An analysis of
random numbers shall be
discussion on DRBG selection is provided in Appendix G. Pseudocode examples for each
DRBG are provided in Appendix F. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Appendix B.
10.1 eterministic RBGs Based on Hash Functio

A DRBG may be based on a hash function that is non-invertible or one-way. The ha
based DRBGs specified in this Recommendation have been designed to use any Ap
hash function and may be used by consuming applications requiring various security
strengths, providing that the appropriate hash function is used and sufficient entropy is
obtained for the seed.

The following are provided as DRBGs based on hash functions:

1. The Hash_DRBG specified in Section 10.1.1.

2. The HMAC_DRBG specif

The maximum security strength that can be supported by e
SP 800-57. However, this Recommendation supports only four security strengths: 112,
128, 192, and 256. Table 2 specifies the values that shall be used for the function
envelopes and DRBG algorithm for each Appro

 SHA-1 SHA-224 SHA-256 SHA-384 SHA-512

Supported security strengths See SP 800-57

hig thes _supported_security_strength See SP 800-57

Ou ttpu Block Length (outlen) 160 224 256 384 512

Requir ropy for
stantiate and reseed

security_strength ed minimum ent
in

Minimum entropy input length
(min_length)

security_strength

Maximum entropy input length

(max_ length)
≤ 235 bits

Seed length (seedlen) for
Hash_DRBG

440 440 440 888 888

NIST SP 800-90 - Hash_DRBG DRAFT December 2005

43

-1 SHA-224 SHA-256 SHA-384 SHA-512 SHA

Maximum personalization string ≤ 235 bits
length
(max_personalization_string_length)

Maximum additional_input length
(max_additional_input_length)

≤ 235 bits

max_number_of_bits_per_request ≤ 219 bits

Number of requests between ≤ 248
reseeds (reseed_interval)

or Hash_DRBG is determined by subtracting the count field (in the
h function input block

SH .
10.1

BG
tiation and reseeding.

xceed the desired security strength of the
consuming application.

l State

 consists of:

n bits that is updated du he DRBG.

len bits that depends on the

counter (reseed_counter) that indicates the number of requests for
ince new entropy_input was obtained during instantiation

information:

 of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit for using the
SHA-224; this is also the case for SHA-384 and SHA-512, i.e., the use of SHA-256 or
SHA-512 instead of SHA-224 or SHA-384, respectively, is preferred.

The value for seedlen f
hash function specification) and one byte of padding from the has
length; in the case of SHA-1, SHA-224 and SHA 256, = 512 - 64 - 8 = 440; for seedlen

A-384 and SHA-512, seedlen = 1024 - 128 - 8 = 888
.1 Hash_DRBG

Figure 8 presents the normal operation of the Hash_DRBG generate algorithm. The
Hash_DRBG requires the use of a hash function during the instantiate, reseed and
generate functions; the same hash function shall be used in all functions. Hash_DR
uses the derivation function specified in Section 10.4.1 during instan
The hash function to be used shall meet or e

10.1.1.1 Hash_DRBG Interna

The internal_state for Hash_DRBG

1. The working_state:

a. A value (V) of seedle ring each call to t

b. A constant C of seed

c. A

seed.

pseudorandom bits s
or reseeding.

2. Administrative

a. The security_strength

NIST SP 800-90 - Hash_DRBG DRAFT December 2005

44

resistance capability is required for the DRBG.

ica
of the internal state upon which

i.e.,
he

n

The instantiation of Hash_DRBG

. The contents of the

h function. The

on are
pro e

The tantiate algorithm for
this .

Inp
1. : The string of bits obtained from the entropy input source.

pecified in Section 8.6.7.

tion string received from the
 used,

The values of V and C are the crit
values
the security of this DRBG depends (

l

Figure 8: Hash_DRBG

V C
reseed

counter

(O t.)p
additional

input

Hash
Function

+

V and C are the “secret values” of t
internal state).
10.1.1.2 Instantiation of Hash_DRBG

Notes for the instantiate functio
specified in Section 9.1:

requires a call to the instantiate
function. Process step 9 of that
function calls the instantiate
algorithm in this section. For this
DRBG, step 5 should be omitted.

The values of
highest_supported_security_strength
and min_length are provided in Table
2 of Section 10.1
internal state are provided in Section
10.1.1.1.

The instantiate algorithm:

Let Hash_df be the hash derivation
function specified in Section 10.4.1
using the selected has
output block length (outlen), seed
length (seedlen) and appropriate
security_strengths for the
implemented hash functi

vid d in Table 2 of Section 10.1.

 following process or its equivalent shall be used as the ins
 DRBG (see step 9 of the instantiate process in Section 9.1)

ut:
entropy_input

2. nonce: A string of bits as s

3. personalization_string: The personaliza
consuming application. If a personalization_string will never be

If additional
input ≠ Null + +

+1

Pseudorandom BitsHash
Function

+ Counter
(From 1)

Iterate to obtain
enough bits

Hash
Function

+ Counter
(From 1)

Iterate to obtain
enough bits V reseed

counter

C ctr

C

V

|| additional
inputV ||0x02 || additional
inputV ||0x02

V

Hash
Function

0x03 || V

+

NIST SP 800-90 - Hash_DRBG DRAFT December 2005

45

e personalization_string.

tal values for V, C, and reseed_counter (see

G Instantiate Process:
put || nonce || personalization_string.

material, seedlen).

edlen). Comment: Preceed V with a byte of
zeros.

unter as the initial_working_state.
10.1.1.3 tiation

No Section 9.2:

tiation requires a call to the reseed function.
 reseed algorithm specified in this section. The

Table 2 of Section 10.1.

unction specified in Section 10.4.1 using the
 seedlen is provided in Table 2 of Section 10.1.

t shall be used as the reseed algorithm for this
cess in Section 9.2):

nt values for V, C, and reseed_counter (see Section

m the consuming
pplication. If additional_input will never be provided, then step 1 may be

Output:
1. new_working_state

then step 1 may be modified to remove th

Output:
1. initial_working_state: The ini

Section 10.1.1.1).

Hash_DRB
1. seed_material = entropy_in

2. seed = Hash_df (seed_

3. V = seed.

4. C = Hash_df ((0x00 || V), se

5. reseed_counter = 1.

6. Return V, C, and reseed_co
 Hash_DRBG Instan Reseeding a

tes for the reseed function specified in

The reseeding of a Hash_DRBG instan
Process step 5 of that function calls the
values for min_length are provided in

The reseed algorithm:

Let Hash_df be the hash derivation f
selected hash function. The value for

The following process or its equivalen
DRBG (see step 5 of the reseed pro

Input:

1. working_state: The curre
10.1.1.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received fro
a
modified to remove the additional_input.

: The new values for V, C, and reseed counter.

NIST SP 800-90 - Hash_DRBG DRAFT December 2005

46

Hash_DRBG
d_material = 0x01 || V || entropy_input || additional_input.

3.

dlen). Comment: Preceed with a byte of all

10.1.1.4

Notes for the generate function specified in Section

The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call
to t te algorithm

number_of_bits_per_request and outlen

e value of V as well as
r of generation requests.

this

eseed_counter (see Section
0.1.1.1).

to

Outpu
tus: The status returned from the function. The status will indicate

. returned_bits: The pseudorandom bits to be returned to the generate function.

Reseed Process:
1. see

2. seed = Hash_df (seed_material, seedlen).

V = seed.

4. C = Hash_df ((0x00 || V), see
zeros.

5. reseed_counter = 1.

6. Return V, C, and reseed_counter for the new_working_state.
 Generating Pseudorandom Bits Using Hash_DRBG

9.3:

he generate function. Process step 8 of that function calls the genera
specified in this section. The values for max_
are provided in Table 2 of Section 10.1.

The generate algorithm:

Let Hash be the selected hash function. The seed length (seedlen) and the maximum
interval between reseeding (reseed_interval) are provided inTable 2 of Section 10.1.
Note that for this DRBG, the reseed counter is used to update th
to count the numbe

The following process or its equivalent shall be used as the generate algorithm for
DRBG (see step 8 of the generate process in Section 9.3):

Input:
1. working_state: The current values for V, C, and r

1

2. requested_number_of_bits: The number of pseudorandom bits to be returned
the generate function.

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be provided, then step 3 of the
Hash_DRBG generate process may be omitted.

t:
1. sta

SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2

NIST SP 800-90 - Hash_DRBG DRAFT December 2005

47

new values for V, C, and reseed_counter.

Ha
turn an indication that a reseed is

2.1 w = Hash (0x02 || V || additional_inp

2seedlen.

.

 Process:

3. new_working_state: The

sh_DRBG Generate Process:
1. If reseed_counter > reseed_interval, then re

required.

2. If (additional_input ≠ Null), then do

ut).

2.2 V = (V + w) mod

3. (returned_bits) = Hashgen (requested_number_of_bits, V).

4. H = Hash (0x03 || V).

5. V = (V + H + C + reseed_counter) mod 2seedlen

6. reseed_counter = reseed_counter + 1.

7. Return SUCCESS, returned_bits, and the new values of V, C, and
reseed_counter for the new_working_state.

Hashgen (...):

Input:
1. requested_no_of_bits: The number of bits to be returned.

2. V: The current value of V.

Output:
 1. returned_bits: The generated bits to be returned to the generate function.

Hashgen

1. ⎥
⎤

⎢⎢
⎡=

bitsofnorequestedm ___ .
⎥outlen

3.

 W = W || wi.

5.

2. data = V.

W = the Null string.

4. For i = 1 to m

4.1 wi = Hash (data).

4.2

4.3 data = (data + 1) mod 2seedlen.

returned_bits = Leftmost (requested_no_of_bits) bits of W.

6. Return returned_bits.

NIST SP 800-90 - HMAC_DRBG DRAFT December 2005

48

10.1.2

HM ces of an Approved keyed hash function, which is
based o
Section 10.1.2.2 and the HMAC function within the Update function as the derivation
function during instantiation and re e hash function shall be used
through
meet or ex
of the cons

Figure
three st
using a)
functio
HMAC
reseed
state w
is provi
internal state after pseudorandom
gen rations in the top
portion of the figure are only performed if
the add
depicts the
10.1.2.1

The internal state for HMAC_DRBG
consist

te:

The value V of outlen bits,
which is updated each time

 bits of output
ed (where outlen is

f Section

b. which
 each

BG generates

dom bits
since instantiation or reseeding.

HMAC_DRBG (...)

AC_DRBG uses multiple occurren
n an Approved hash function. This DRBG uses the Update function specified in

seeding. The sam
out. The hash function used shall

ceed the security requirements (Opt) additional input

If ≠ Null

UPDATE

uming application.

9 depicts the HMAC_DRBG in
ages. HMAC_DRBG is specified
n internal function (Update . This
n is called during the
_DRBG instantiate, generate and

Key V reseed
ntecou r

...

State

algorithms to adjust the internal
hen new entropy or additional input
ded, as well as to update the

 bits are
erated. The ope

itional input is not null. Figure 10
Update function. Key V reseed

State

counter
... HMAC

V

Iterate

 HMAC_DRBG Internal State

s of: Bi ...B0 || ... || Bi-1

Pseudorandom bits

UPDATEKey V reseed
counter

...

State

+ 1

additional input

V Key

1. The working_sta

a.

another outlen
are produc
specified in Table 2 o
10.1).

The Key of outlen bits,
is updated at least once
time that the DR
pseudorandom bits.

c. A counter (reseed_counter)
that indicates the number of

Figure 9: HMAC_DRBG Generate Functionrequests for pseudoran

NIST SP 800-90 - HMAC_DRBG DRAFT December 2005

49

rmation:

 the “secret values” of the internal state).

nction.

be
sed.

lue of Key.

Outpu
1.

2.

HMAC_DRBG Update Process:
vided_data).

2.

3.), then return K and V.

rovided_data).

5.

6.

2. Administrative info

a. The security_strength of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG.

The values of V and Key are the critical values of the internal state upon which the security
of this DRBG depends (i.e., V and Key are
10.1.2.2 The Update Function (Update)

The Update function updates the internal
state of HMAC_DRBG using the
provided_data. Note that for this DRBG,
the Update function also serves as a
derivation function for the instantiate and
reseed functions.

Let HMAC be the keyed hash function
specified in FIPS 198 using the hash
function selected for the DRBG from
Table 2 in Section 10.1.

The following or an equivalent process
shall be used as the Update fu

Figure 10: HMAC_DRBG Update Function

Input:
1. provided_data: The data to

u

2. K: The current va

3. V: The current value of V.

t:
K: The new value for Key.

V: The new value for V.

1. K = HMAC (K, V || 0x00 || pro

V = HMAC (K, V).

If (provided_data = Null

4. K = HMAC (K, V || 0x01 || p

V = HMAC (K, V).

Return K and V.

NIST SP 800-90 - HMAC_DRBG DRAFT December 2005

50

10.1

Notes f

The rocess
step 9 o cified in this section. For this

rnal
.

The instantiate algorithm:

 Section 10.1.2.2. The ouput block length
on 10.1.

alent shall be used as the instantiate algorithm for
 process in Section 9.1):

its obtained from the entropy input source.

ecified in Section 8.6.7.

n_string: The personalization string received from the consuming
on_string will never be used, then step 1 may be

sonalization_string.

l values for V, Key and reseed_counter (see

n 10.1.2.1).

HMAC_DRBG Instantiate Process:
put || nonce || personalization_string.

y = 0x00 00...00. Comment: outlen bits.

Comm

Comment: Update Key and V.

terial, Key, V).

seed_counter as the initial_working_state.
10.1.2.4

Notes f

The _DRBG instantiation requires a call to the reseed function.
Process step 5 of that function calls the reseed algorithm specified in this section. The

.2.3 Instantiation of HMAC_DRBG

or the instantiate function specified in Section 9.1:

 instantiation of HMAC_DRBG requires a call to the instantiate function. P
f that function calls the instantiate algorithm spe

DRBG, step 5 should be omitted. The values of highest_supported_security_strength
and min _length are provided in Table 2 of Section 10.1. The contents of the inte
state are provided in Section 10.1.2.1

Let Update be the function specified in
(outlen) is provided in Table 2 of Secti

The following process or its equiv
this DRBG (see step 9 of the instantiate

Input:
1. entropy_input: The string of b

2. nonce: A string of bits as sp

3. personalizatio
application. If a personalizati
modified to remove the per

Output:
1. initial_working_state: The inita

Sectio

1. seed_material = entropy_in

2. Ke

3. V = 0x01 01...01. ent: outlen bits.

4. (Key, V) = Update (seed_ma

5. reseed_counter = 1.

6. Return V, Key and re
 Reseeding an HMAC_DRBG Instantiation

or the reseed function specified in Section 9.2:

 reseeding of an HMAC

NIST SP 800-90 - HMAC_DRBG DRAFT December 2005

51

in Table 2 of Section 10.1.

es for V, Key and reseed_counter (see Section

 the consuming

Pro

2.

eed_counter = 1.

10.1.2.5 G ndom Bits Using HMAC_DRBG

No Section 9.3:

The ion requires a
call Process step the generate algorithm
specified in this section. The values for max_number_of_bits_per_request and outlen
are provided in Table 2 of Section 10.1.

The generate algorithm :

Let FIPS 198 using the hash function
selected for the DRBG. The value for reseed_interval is defined in Table 2 of Section
10.

 used as the generate algorithm for this

values for min_length are provided

The reseed algorithm:

Let Update be the function specified in Section 10.1.2.2. The following process or its
equivalent shall be used as the reseed algorithmn for this DRBG (see step 5 of the
reseed process in Section 9.2):

Input:
1. working_state: The current valu

10.1.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from
application. If additional_input will never be used, then process step 1 may be
modified to remove the additional_input.

Output:
1. new_working_state: The new values for V, Key and reseed_counter.

cess:
1. seed_material = entropy_input || additional_input.

(Key, V) = Update (seed_material, Key, V).

3. res

4. Return V, Key and reseed_counter as the new_working_state.
enerating Pseudora

tes for the generate function specified in

 generation of pseudorandom bits using an HMAC_DRBG instantiat
 to the generate function. 8 of that function calls

HMAC be the keyed hash function specified in

1.

The following process or its equivalent shall be
DRBG (see step 8 of the generate process in Section 9.3):

Input:

1. working_state: The current values for V, Key and reseed_counter (see Section
10.1.2.1).

NIST SP 800-90 - HMAC_DRBG DRAFT December 2005

52

m bits to be returned to
 function.

f

put parameter as one of the calling parameters, or if
e implementation allows additional_input, but a given request does not

urned_bits: The pseudorandom bits to be returned to the generate function.

RBG Generate Process:
tion that a reseed is

 Null, then (Key, V) = Update (additional_input, Key, V).

4.1 V = HMAC (Key V).

 + 1.

SS, returned_bits, and the new values of Key, V and

2. requested_number_of_bits: The number of pseudorando
the generate

3. additional_input: The additional input string received from the consuming
application. If an implementation will never use additional_input, then step 3 o
the HMAC generate process may be omitted. If an implementation does not
include the additional_in
th
provide any additional_input, then a Null string shall be used as the
additional_input in step 6.

Output:
1. status: The status returned from the function. The status will indicate

SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. ret

3. new_working_state: The new values for V, Key and reseed_counter.

HMAC_D
1. If reseed_counter > reseed_interval, then return an indica

required.

2. If additional_input ≠

3. temp = Null.

4. While (len (temp) < requested_number_of_bits) do:

,

4.2 temp = temp || V.

5. returned_bits = Leftmost requested_number_of_bits of temp.

6. (Key, V) = Update (additional_input, Key, V).

7. reseed_counter = reseed_counter

8. Return SUCCE
reseed_counter as the new_working_state).

NIST SP 800-90 - CTR_DRBG DRAFT December 2005

53

10.2 DRB

A block cipher DRBG i
algorithm
this Recomm
any Approve
be used by co
various level
appropriate b
length are used, and sufficient entropy is
obtained for the seed.
10.2.1 CT

CTR_DRBG
algorithm in
800-38A.
key lengt
operations. The block ci
length
requirem

CTR_DRBG d using an internal
function (
Update function. This function is called by the
instantiate, g eed algorithms to
adjust the
additional inp update
the internal s f are
generated. Fi _DRBG in
three stag ed if the
additiona p

Table 3 specifies the v
algorithm
Table 3: D

 3
TDEA

ES-128 AES-192 AES-256

Gs Based on Block Ciphers

s based on a block cipher
. The block cipher DRBG specified in

endation has been designed to use
d block cipher algorithm and may
nsuming applications requiring

s of security, providing that the
lock cipher algorithm and key

Figure 11: CTR_DRBG Update Function

R_DRBG

 uses an Approved block cipher
the counter mode as specified in SP

 The same block cipher algorithm and
h shall be used for all block cipher

pher algorithm and key
 shall meet or exceed the security

ents of the consuming application.

 is specifie
Update). Figure 11 depicts the

enerate and res
 internal state when new entropy or

ut is provided, as well as to
tate a ter pseudorandom bits
gure 12 depicts the CTR

es. The operations in the top portion of the figure are only perform
l in ut is not null.

alues that shall be used for the function envelopes and DRBG
s.
efinitions for the CTR_DRBG

Key A

Supported security strengths See SP 800-57

highest_supported_security_strength See SP 800-57

Output block length (outlen) 64 128 128 128

Key length (keylen) 168 128 192 256

NIST SP 800-90 - CTR_DRBG DRAFT December 2005

54

3 Key AES-128 AES-192 AES-256
TDEA

Required minimum entropy for
instantiate and reseed

security_strength

Seed length (seedlen = outlen + keylen) 232 256 320 384

If a derivation function is used:

Minimum entropy input length
(min _length)

security_strength

Maximum entropy input length
(max _length)

≤ 235 bits

Maximum personalization string
length
(max_personalization_string_length)

≤ 235 bits

Maximum additional_input length
(max_additional_input_length)

≤ 235 bits

If a derivation function is not used
(full entropy is available):

Minimum entropy input length
(min _length = outlen + keylen)

seedlen

Maximum entropy input length
(max _length) (outlen + keylen)

seedlen

Maximum personalization string
length
(max_personalization_string_length)

seedlen

Maximum additional_input length
(max_additional_input_len

seedlen
gth)

max_number_of_bits_per_request ≤ 213 ≤ 219

Number of requests between reseeds
(reseed_interval)

≤ 232 ≤ 248

mented to use the block cipher derivation function
d reseeding. However, the DRBG is

adeoff with respect derivation
ropy input is always available to provid ropy in

tion is optional; otherwise, the derivatio
. Table 3 provides lengths required for the entropy_input,

The CTR_ DRBG may be imple
specified in Section 10.4.2 during instantiation an
specified to allow an implementation tr to the use of this
function. If a source for full ent e ent put
when requested, the use of the derivation func
functon shall be used

n

NIST SP 800-90 - CTR_DRBG DRAFT December 2005

55

personalization_string and
additional_input for each case.

 is not

Wh
selected block cipher algorithm,
the
bit
key and 8 bits of parity as
spe
specified in SP 800-67.
10.2.1.1

produced.

ed.

c. A counter

When full entropy is available,
and a derivation function
used by an implementation, the
seed construction (see Section
8.6.1) shall not use a nonce4.

en using TDEA as the

keys shall be handled as 64-
blocks containing 56 bits of

cified for the TDEA engine

 CTR_DRBG Internal
State

The internal state for
CTR_DRBG consists of:

1. The working_state:

a. The value V of
outlen bits, which is
updated each time
another outlen bits
of output are

b. The Key of keylen
bits, which is
updated whenever a
predetermined
number of output
blocks are
generat

(reseed_counter)
that indicates the
number of requests

4 The specifications in this Standard do not accommodate the special treatment required for a nonce in this
case.

Key V
reseed
counter

...

State

Block
Encrypt

Iterate

Bi

Pseudorandom bits

...|| Bi-1 B0 || ...

+

1

Figure 12: CTR-DRBG

NIST SP 800-90 - CTR_DRBG DRAFT December 2005

56

 bits since instantiation or reseeding.

on:

 of the DRBG instantiation.

ce_flag that indicates whether or not a prediction
 is required for the DRBG.

e critical values of the internal state upon which the
ends (i.e., V and Key are the “secret values” of the internal

pdate)

tes the internal state of the CTR_DRBG using the
utlen, keylen and seedlen are provided in Table 3 of

k cipher operation in step 2.2 of the CTR_DRBG update process
lgorithm (also see Section 10.4).

The following or an equivalent process shall be used as the Update function.

The data to be used. This must be exactly seedlen bits in
h is guaranteed by the construction of the provided_data in

eseed and generate functions.

2. e of Key.

3. e of V.

Outpu
1. value for Key.

r V.

CTR_D ss:

1.

2. < seedlen) do

 + 1) mod 2outlen.

block = Block_Encrypt (Key, V).

ouput_block.

3. dlen bits of temp.

4 temp = temp ⊕ provided_data.

for pseudorandom

2. Administrative informati

a. The security_strength

b. A prediction_resistan
resistance capability

The values of V and Key are th
security of this DRBG dep
state).
10.2.1.2 The Update Function (U

The Update function upda
provided_data. The values for o
Section 10.2.1. The bloc
uses the selected block cipher a

Input:
1. provided_data:

length; this lengt
the instantiate, r

Key: The current valu

V: The current valu

t:
K: The new

2. V: The new value fo

RBG Update Proce

temp = Null.

While (len (temp)

2.1 V = (V

2.2 output_

2.3 temp = temp ||

temp = Leftmost see

5. Key = Leftmost keylen bits of temp.

NIST SP 800-90 - CTR_DRBG DRAFT December 2005

57

6.

ey and V.
10.2.1.3

Notes f

his
gth

 min _length are provided in Table 3 of Section 10.2.1. The contents of the
 10.2.1.1.

.2.1.

tantiate
 is the same for each case; likewise for the output from the instantiate
. However, the process steps are slightly different (see Sections 10.2.1.3.1

and

Input:
 obtained from the entropy input source.

ecified in Section 8.6.7; this string shall not be
unction is not used.

sonalization_string: The personalization string received from the

Ou
e inital values for V, Key, and reseed_counter (see

.1).
10.2.1.3 n When Full Entropy is Available for the

nction is Not Used

The followi pr instantiate algorithm for this
DRBG:

CTR_DRBG

Comment: Ensure that the length of the
sonalization_string is exactly seedlen

bits. The maximum length was checked in

V = Rightmost outlen bits of temp.

7. Return the new values of K
 Instantiation of CTR_DRBG

or the instantiate function specified in Section 9.1:

The instantiation of CTR_DRBG requires a call to the instantiate function. Process
step 9 of that function calls the instantiate algorithm specified in this section. For t
DRBG, step 5 should be omitted. The values of highest_supported_security_stren
and
internal state are provided in Section

The instantiate algorithm:

Let Update be the function specified in Section 10.2.1.2. The output block length
(outlen), key length (keylen), seed length (seedlen) and security_strengths for the
block cipher algorithms are provided in Table 3 of Section 10

For this DRBG, there are two cases for the processing. The input to the ins
algorithm
algorithm

 10.2.1.3.2).

1. entropy_input: The string of bits

2. nonce: A string of bits as sp
present when a derivation f

3. per
consuming application.

tput:
1. initial_working_state: Th

Section 10.2.1
.1 The Process Steps for Instantiatio

Entropy Input, and a Derivation Fu

ng ocess or its equivalent shall be used as the

 Instantiate Process:
1. temp = len (personalization_string).

per

NIST SP 800-90 - CTR_DRBG DRAFT December 2005

58

ction 9.1, processing step 3, using Table 3
fine the maximum length.

ersonalization_string = personalization_string ||

n_string.

 = 1.

Imp

Se
to de

2. If (temp < seedlen), then p
0seedlen - temp.

3. seed_material = entropy_input ⊕ personalizatio

4. Key = 0keylen. Comment: keylen bits of zeros.

5. V = 0outlen. Comment: outlen bits of zeros.

6. (Key, V) = Update (seed_material, Key, V).

7. reseed_counter

8. Return V, Key, and reseed_counter as the initial_working_state.

lementation note:

 personalization_string will never be provided from the instantiate fIf a unction, then
step

Tha
10.2 he Process Steps for Instantiation When a Derivation Function is Used

Let Blo
chosen

The follow instantiate algorithm for this
DRBG

CTR_D ss:
d_material = entropy_input || nonce || personalization_string.

seed_material is exactly seedlen bits.

3. zeros.

, Key, V).

Implementation note:

s 1-3 are replaced by:

seed_material = entropy_input.

t is, steps 1-3 collapse into the above step.
.1.3.2 T

ck_Cipher_df be the derivation function specified in Section 10.4.2 using the
 block cipher algorithm and key size

ing process or its equivalent shall be used as the
:

RBG Instantiate Proce
1. see

Comment: Ensure that the length of the

2. seed_material = Block_Cipher_df (seed_material, seedlen).

Key = 0keylen. Comment: keylen bits of

4. V = 0outlen. Comment: outlen bits of zeros.

5. (Key, V) = Update (seed_material

6. reseed_counter = 1.

7. Return V, Key, and reseed_counter as the initial_working_state.

If a personalization_string will never be provided from the instantiate function, then

NIST SP 800-90 - CTR_DRBG DRAFT December 2005

59

steps 1-2 are replaced by:

seed_material = Block_Cipher_d
10.2.1.4

Notes f

The s function.
Pro f th
valu

The res

Let pecified in Section 10.2.1.2. The seed length (seedlen) is
pro

re are two cases for the processing. The input to the reseed
e for each case; likewise for the output from the reseed algorithm.

Input:
r V, Key and reseed_counter (see Section

input string received from the consuming

ut:
 values for V, Key, and reseed_counter.

10.2.1.4 r the

The following process or its equivalent shall s
DRBG e

CT D

Ensure that the length of the
input is exactly seedlen bits. The

maximum length was checked in Section
le 3 to

seedlen - temp.

f (entropy_input, seedlen).
 Reseeding a CTR_DRBG Instantiation

or the reseed function specified in Section 9.2:

 re eeding of a CTR_DRBG instantiation requires a call to the reseed
cess step 5 o at function calls the reseed algorithm specified in this section. The
es for min _length are provided in Table 3 of Section 10.2.1.

eed algorithm:

Update be the function s
vided in Table 3 of Section 10.2.1.

For this DRBG, the
algorithm is the sam
However, the process steps are slightly different (see Sections 10.2.1.4.1 and
10.2.1.4.2).

1. working_state: The current values fo

10.2.1.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional
application.

Outp
1. new_working_state: The new
.1 The Process Steps for Reseeding When Full Entropy is Available fo

Entropy Input, and a Derivation Function is Not Used

 be used as the reseed algorithm for thi
 (se step 5 of the reseed process in Section 9.2):

R_ RBG Reseed Process:
1. temp = len (additional_input).

Comment:
additional_

9.2, processing step 2, using Tab
define the maximum length.

2. If (temp < seedlen), then additional_input = additional_input || 0

NIST SP 800-90 - CTR_DRBG DRAFT December 2005

60

 entropy_input ⊕ additional_input.

4.

w_working_state.

Imp

3. seed_material =

(Key, V) = Update (seed_material, Key, V).

5. reseed_counter = 1.

6. Return V, Key and reseed_counter as the ne

lementation note:

dditional_input will never be provided from the reseed function, then steps 1-3 are
laced by:

If a
rep

al = entropy_input.

Tha
10.2.1.4.2 g When a Derivation Function is Used

Let
cho

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.2):

CT D
1. ial = entropy_input || additional_input.

2. l = Block_Cipher_df (seed_material, seedlen).

y, V) = Update (seed_material, Key, V).

Implementation note

seed_materi

t is, steps 1-3 collapse into the above step.
 The Process Steps for Reseedin

 Block_Cipher_df be the derivation function specified in Section 10.4.2 using the
sen block cipher algorithm and key size.

R_ RBG Reseed Process:
seed_mater

Comment: Ensure that the length of the
seed_material is exactly seedlen bits.

seed_materia

3. (Ke

4. reseed_counter = 1.

5. Return V, Key, and reseed_counter as the new_working_state.

:

 (entropy_input, seedlen).
10.2.1.5

Notes for the generate function specified in S

The generation of pseudorandom bits usi
call to the generate function. Process step
algorithm specified in this section. The v _per_request
and

If additional_input will never be provided from the reseed function, then steps 1-2
become:

seed_material = Block_Cipher_df
Generating Pseudorandom Bits Using CTR_DRBG

ection 9.3:

ng a CTR_DRBG instantiation requires a
 8 of that function calls the generate
alues for max_number_of_bits

 max_additional_input_length, and outlen are provided in Table 3 of Section

NIST SP 800-90 - CTR_DRBG DRAFT December 2005

61

10.

For g. The input to the generate
algo h case; likewise for the output from the generate
algo cess steps are slightly different (see Sections 10.2.1.5.1
and .

function specified in Section 10.2.1.2, and let Block_Encrypt be

Input:
r V, Key, and reseed_counter (see Section

nput string received from the consuming

 = 0seedlen.

atus will indicate
SUCCESS, or indicate that a rese
pseudorandom bits can be genera

 function.

d reseed_counter.

10.2.1.5 r Generating Pseudorandom BitsWhen a Derivation

or its equivalent shall be used as the generate algorithm for this
e generate process in Section 9.3.3):

1. that a reseed is

nsure that the length of the
e

tion

 of
the additional input is < seedlen, pad with

2.1.

 this DRBG, there are two cases for the processin
rithm is the same for eac
rithm. However, the pro

 10 2.1.5.2).

Let Update be the
the function specified in Section 10.4.2. The seed length (seedlen) and the value of
reseed_interval are provided in Table 3 of Section 10.2.1.

1. working_state: The current values fo

10.2.1.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returned
to the generate function.

3. additional_input: The additional i
application. If additional_input will never be allowed, then step 3 becomes:

additional_input

Output:
1. status: The status returned from the function. The st

ed is required before the requested
ted.

2. returned_bits: The pseudorandom bits returned to the generate

3. working_state: The new values for V, Key, an

.1 The Process Steps fo
Function is Not Used for the DRBG Implementation

The following process
DRBG (see step 8 of th

CTR_DRBG Generate Process:
If reseed_counter > reseed_interval, then return an indication
required.

2. If (additional_input ≠ Null), then

Comment: E
additional_input is exactly seedlen bits. Th
maximum length was checked in Sec
9.3.3, processing step 4, using Table 3 to
define the maximum length. If the length

NIST SP 800-90 - CTR_DRBG DRAFT December 2005

62

zero bits.

hile (len (temp) < requested_number_of_bits) do:

y, V) = Update (additional_input, Key, V).

8. counter

10.2.1.5 tion

2.1 additional_input = Block

2.2 (Key, V) = Update (addi

Else additional_input = 0seedlen.

3. temp = Null.

2.1 temp = len (additional_input).

2.2 If (temp < seedlen), then
additional_input = additional_input || 0seedlen - temp.

2.3 (Key, V) = Update (additional_input, Key, V).

Else additional_input = 0seedlen.

3. temp = Null.

4. W

4.1 V = (V + 1) mod 2outlen.

4.2 output_block = Block_Encrypt (Key, V).

4.3 temp = temp || output_block.

5. returned_bits = Leftmost requested_number_of_bits of temp.

Comment: Update for backtracking
resistance.

6. (Ke

7. reseed_counter = reseed_counter + 1.

Return SUCCESS and returned_bits; also return Key, V, and reseed_
as the new_working_state.

.2 The Process Steps for Generating Pseudorandom BitsWhen a Deriva
Function is Used for the DRBG Implementation

The Block_Cipher_df is specified in Section 10.4.2 and shall be implemented using the
chosen block cipher algorithm and key size.

The following process or its equivalent shall be used as generate algorithm for this
DRBG (see step 8 of the generate process in Section 9.3.3):

CTR_DRBG Generate Process:

1. If reseed_counter > reseed_interval, then return an indication that a reseed is
required.

2. If (additional_input ≠ Null), then

_Cipher_df (additional_input, seedlen).

tional_input, Key, V).

NIST SP 800-90 - CTR_DRBG DRAFT December 2005

63

4. While (len (temp) < requested_nu its) do:

4.1 =

4.2 pt (Key, V).

4.3 tem

5. retu emp.

Comment: Update for backtracking
resistance.

7. ter + 1.

8. r Key, V, and reseed_counter

mber_of_b

V (V + 1) mod 2outlen.

output_block = Block_Encry

p = temp || output_block.

rned_bits = Leftmost requested_number_of_bits of t

6. (Key, V) = Update (additional_input, Key, V).

reseed_counter = reseed_coun

Retu n SUCCESS and returned_bits; also return
as the new_working_state.

NIST SP 800-90 - Dual_EC_DRBG DRAFT December 2005

64

10.3 lems

A DRBG ad ntage of number theoretic problems (e.g., the
discrete i erator’s properties of randomness
and/or un i e difficulty of finding a solution to that
problem. s ed on the elliptic curve discrete logarithm
probl .
10.3.1 Dual Elliptic Curve Deterministic RB

Dual_EC_ , sometimes known as the
“ellip ven points P and Q on an elliptic
curve

Dual
generatio m strings by performing scalar multiplications on two
points in an elliptic curve group, where the curve is defined over a field approximately 2m
in size. For all the NIST curves given in this Recommendation, m ≥ 256. Figure 13 depicts
the Dual_EC_DRBG.

The instantiation of this DRBG requires the
selection of an appropriate elliptic curve and
curve points specified in Appendix A.1 for the
desired security strength. The seed used to
determine the initial value (s) of the DRBG shall
have entropy that is at least security_strength bits.
Further requirements for the seed are provided in
Section 8.6. This DRBG uses the derivation
function specified in Section 10.4.1 during
instantiation and reseeding.

Backtracking resistance is inherent in the

Deterministic RBG Based on Number Theoretic Prob

 can be designed to take va
logar thm problem). If done correctly, such a gen
pred ctability will be assured by th
 Thi section specifies a DRBG bas

em
G (Dual_EC_DRBG)

DRBG is based on the following hard problem
tic curve discrete logarithm problem” (ECDLP): gi
 of order n, find a such that Q = aP.

_EC_DRBG uses a seed that is m bits in length (i.e., seedlen = m) to initiate the
n of outlen-bit pseudorando

Figure 14: Dual_EC_DRBG (...)
Backtracking Resistance

Figure 13: Dual_EC_DRBG

NIST SP 800-90 - Dual_EC_DRBG DRAFT December 2005

65

ure 14,

y the extraction of the x coordinate for the resulting point and for the random
ing a line in the direction

of the arrow is the normal operation; inverting the direction implies the ability to solve the

ign, as knowledge of S1 does not allow an
P

lues that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Appendix A.1. Note that all
curves can be instantiated at a security strength lower than its highest possible security
strength. For example, the highest security strength that can be supported by curve P-384 is
192 bits; however, this curve can alternatively be instantiated to support only the 112 or
128-bit security strengths).
Table 4: Definitions for the Dual_EC_DRBG

 P-256 P-384 P-521

algorithm, even if the internal state is compromised. As shown in Fig
Dual_EC_DRBG generates a seedlen-bit number for each step i = 1,2,3,…, as follows:
 Si = ϕ(x(Si−1 ∗ P))
 Ri = ϕ(x(Si ∗ Q)).
Each arrow in the figure represents an Elliptic Curve scalar multiplication operation,
followed b
output Ri, followed by truncation to produce the output. Follow

ECDLP for that specific curve. An adversary’s ability to invert an arrow in the figure
implies that the adversary has solved the ECDLP for that specific elliptic curve.
Backtracking resistence is built into the des
adversary to determine S0 (and so forth) unless the adversary is able to solve the ECDL
for that specific curve. In addition, knowledge of R1 does not allow an adversary to
determine S1 (and so forth) unless the adversary is able to solve the ECDLP for that
specific curve.

Table 4 specifies the va

Supported security strengths See SP 800-57
Size of the base field (in bits) 256 384 521

highest_supported_
security_strength

See SP 800-57

Output block length (max_outlen 240 368 504 =
largest multiple of 8 less than (size
of the base field) - (13 + log2 (the
cofactor))

Required minimum entropy for
instantiate and reseed

security_strength

Minimum entropy input length
(min_length)

security_strength

Maximum entropy input length
(max _length)

≤ 213 bits

NIST SP 800-90 - Dual_EC_DRBG DRAFT December 2005

66

P-521 P-256 P-384

Maximum personalization string ≤ 213 bits
length

_length) (max_personalization_string

Maximum additional input length
(max_additional_input_length)

≤ 213 bits

Seed length (seedlen) 2 × security_strength

Appropriate hash functions SHA-1, SHA-
224, SHA-256,

SHA-384, SHA-
512

SHA-224, SHA-
256, SHA-384,
SHA-512

SHA-256,
SHA-384
SHA-512

,

max_number_of_bits_per_request max_outlen × reseed_interval
Number of blocks between
reseeding (reseed_

≤ 2
interval)

32 blocks

10.3.1.1 Dual_EC_DRBG Internal State

The internal state for Dual_EC_DRBG consists of:

1. The working_state:

a. A value (s) that determines the current position on the curve.

b. The elliptic curve domain param seedlen, p, a where seed e
a and b are two field elements th

 the order of the point G. If ed by an
hese parameters need not be present in the working_ .

nts P and Q on the curve; the generati ified in FIPS 186-
he chosen curve will be used as P. If only one curve will be used by an

oints nee t be present in orking_state.

) that indicates the number of blocks of random
_EC_DRBG since the initial seeding or the previous

reseeding.

on:

h provided by the instance of the DRBG,

 that indicates whether prediction resistance is

the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value” of the internal state).

eters (, b, n), len is th
length of the seed ;
the curve, and n is

at define the equation of
only one curve will be us

implementation, t state

c. Two poi
3 for t

ng point G spec

implementation, these p

d. A counter (block_counter
produced by the Dual

d no the w

2. Administrative informati

a. The security_strengt

b. A prediction_resistance_flag
required by the DRBG.

The value of s is the critical value of

NIST SP 800-90 - Dual_EC_DRBG DRAFT December 2005

67

10.3.1.2 Instantiation of Dual_EC_DRBG

specified in Section 9.1:

RBG requires a call to the instantiate function.
calls the instantiate algori is section.

antiate function, the following step shall be performed to
ate curve if multiple curves are a

y_strength n S lect t t
available curve that has a s ≥ th.

The values for seedlen, p, a, b, n, e.

fault values be us
tion may use dif d that they

s evidenced by the use of the procedure specified in Appendix
rocedure described in Appendix A.2.2.

The values for highest_supported_security_strength and min_length are determined by
tion 10.3.1).

 derivation function specified in Section 10.4.1 using an
n from Table 4 in Section 10.3.1. Let seedlen be the

app

The l
this DR

Input:

2.

3. suming

Outpu

1. t value for the initial_working_state.

Dual_EC_DRBG Instantiate Process:

that
bits,

) bits in length.

Notes for the instantiate function

The instantiation of Dual_EC_D
Process step 9 of that function

In process step 5 of the inst

thm in th

select an appropri vailable.

5. Using the securit and Table 4 i
ecurity strength

P, Q are determined by that curv

ection 10.3.1, se
 security_streng

he smalles

It is recommended that the de
A.1. However, an implementa

ed for P and Q as given in Appendix
ferent pairs of points, provide

are verifiably random, a
A.2.1 and the self-test p

the selected curve (see Table 4 in Sec

The instantiate algorithm :

Let Hash_df be the hash
appropriate hash functio

ropriate value from Table 4.

 fo lowing process or its equivalent shall be used as the instantiate algorithm for
BG (see step 9 of the instantiate process in Section 9.1):

1. entropy_input: The string of bits obtained from the entropy input source.

nonce: A string of bits as specified in Section 8.6.7.

personalization_string: The personalization string received from the con
application.

t:

s: The initial secre

2. block_counter: The initialized block counter for reseeding.

1. seed_material = entropy_input || nonce || personalization_string.

Comment: Use a hash function to ensure
the entropy is distributed throughout the
and s is m (i.e., seedlen

NIST SP 800-90 - Dual_EC_DRBG DRAFT December 2005

68

eedlen).

10.3

No

The of
tha
provide

The

he Dual_EC_DRBG

lue of the secret parameter in the working_state.

ing

.

: The re-initialized block counter for reseeding.

Dual_EC_

multiple of 8.

d_material = pad8 (s) || entropy_input || additional_input_string.

e new_working_state.

Implem

2. s = Hash_df (seed_material, s

3. block_counter = 0.

4. Return s, and block_counter for the initial_working_state.
.1.3 Reseeding of a Dual_EC_DRBG Instantiation

tes for the reseed function specified in Section 9.2:

 reseed of Dual_EC_DRBG requires a call to the reseed function. Process step 5
t function calls the reseed algorithm in this section. The values for min _length are

d in Table 4 of Section 10.3. 1.

 reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 10.4.1 using an
appropriate hash function from Table 4 in Section 10.3. 1.

The following process or its equivalent shall be used to reseed t
process after it has been instantiated (see step 5 of the reseed process in Section 9.2):

Input:
1. s: The current va

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consum
application.

Output:
1. s: The new value of the secret parameter in the new_working_state

block_counter2.

DRBBG Reseed Process:
 pad8 Comment: returns a copy of s padded

on the right with binary 0’s, if necessary, to a

1. see

2. s = Hash_df (seed_material, seedlen).

3. block_counter = 0.

4. Return s and block_counter for th

entation notes:

If an implementation never allows additiona
follows :

l_input, then step 1 may be modified as

NIST SP 800-90 - Dual_EC_DRBG DRAFT December 2005

seed_material = pad8 (s) || entropy_input.

69

10.3.1.4 dom Bits Using Dual_EC_DRBG

Notes f

_EC_DRBG instantiation requires a
unction calls the generate algorithm
r_of_bits_per_request and

n should be set to the maximum value as
 However, an implementation may set outlen to any multiple of 8

tes.

The generate algorithm

l
ovided in Table 4.

The l

nary

b. tstring, in_len, out_len) inputs a bitstring of in_len bits, returning
ring consisting of the leftmost out_len bits of bitstring. If in_len < out_len,

 the result

ine coordinates.
 to represent points internally using other

coordinate systems; for instance,
case, a point shall be translated b

d. ϕ (x) maps field elements to non- , taking the bit vector
sion of

eps 6 and 7 of the generate process
e field representation of the curve points. In keeping with

ll be associated with

| | | |

 Z: cm-12 + . . . + c22 + c12 + c0 Z ;

 Generating Pseudoran

or the generate function specified in Section 9.3:

The generation of pseudorandom bits using a Dual
call to the generate function. Process step 8 of that f
specified in this section. The values for max_numbe
max_outlen are provided in Table 4 of Section 10.3.1. outlen is the number of
pseudorandom bits taken from each x-coordinate as the Dual_EC_DRBG steps. For
performance reasons, the value of outle
provided in Table 4.
bits less than or equal to max_outlen. The bits that become the Dual_EC_DRBG
output are always the rightmost bits, i.e., the least significant bits of the x-coordina

:

Let Hash_df be the hash derivation function specified in Section 10.4.1 using an
 Table 4 in Section 10.3.1. The value of reseed_intervaappropriate hash function from

is also pr

 fo lowing are used by the generate algorithm:

a. pad8 (bitstring) returns a copy of the bitstring padded on the right with bi
0’s, if necessary, to a multiple of 8.

Truncate (bi
a st
the bitstring is padded on the right with (out_len - in_len) zeroes, and
is returned.

c. x(A) is the x-coordinate of the point A on the curve, given in aff
An implementation may choose

when efficiency is a primary concern. In this
ack to affine coordinates before x() is applied.

negative integers
representation of a field element and interpreting it as the binary expan
an integer.

The precise definition of ϕ(x) used in st
below depends on th
the convention of FIPS 186-2, the following elements wi
each other (note that m = seedlen):

 B: c| |m-1 cm-2 ... c1 c0 , a bitstring, with cm-1 being leftmost
m-1 2 1 ∈

NIST SP 800-90 - Dual_EC_DRBG DRAFT December 2005

70

0 mod p ∈ GF(p) ;

erted to the integer Z or

d to

ut: The additional input string received from the consuming

rned from the function. The status will indicate
 required before the requested

2. ts to be returned to the generate function.

4.

Dual_E enerate Process:

1.

 Fa: cm-12 m-1 + . . . + c222 + c121 + c

Thus, any field element x of the form Fa will be conv
bitstring B, and vice versa, as appropriate.

e. * is the symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 of the generate process in Section 9.3):

Input:

1. working_state: The current values for s, seedlen, p, a, b, n, P, Q, and a
reseed_counter (see Section 10.3.1.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returne
the generate function.

3. additional_inp
application.

Output:
1. status: The status retu

SUCCESS, or an indication that a reseed is
pseudorandom bits can be generated.

returned_bits: The pseudorandom bi

3. s: The new value for the secret parameter in the new_working_state.

block_counter: The updated block counter for reseeding.

C_DRBG G

Comment: Check whether a reseed is
required.

If >⎟⎟
⎞

⎜⎜
⎛

⎥
⎤

⎢
⎡+

bitsofnumberrequestedcounterblock ____ reseed_interval, then
⎠⎝ ⎥⎢ outlen

return an indication that a reseed is required.

Comment: If additional_input is Null, set to

2.

pad8 (additional_input_string), seedlen).

bits,
me:

3. temp = the Null string.

seedlen zeroes; otherwise, Hash_df to
seedlen bits.

If (additional_input_string = Null), then additional_input = 0

Else additional_input = Hash_df (

Comment: Produce requested_no_of_
outlen bits at a ti

NIST SP 800-90 - Dual_EC_DRBG DRAFT December 2005

71

4

5. t
ed integer. To be precise, t should

ffect

 = ϕ(x(s ∗ Q)). Comment: r is a seedlen-bit number.

9. a ent: seedlen zeroes;

11.

len (temp) < requested_number_of_bits), then go to step 5.

s).

14.

10.4 A

Deriva instantiation and
reseedi throughout a
bits ethod is based on hash functions (see Section
10.4.1), and the other method is based on blo block
cipher derivation function uses a Block_Cip ction
10.4.3.
10.4.1 on Function Using a Hash Function (Hash_df)

This deriva Dual_EC_DRBG specified
Section 10.1.1 and 10.3.1, respectively. The hash
string and returns the requested number of b
the DRBG, and let outlen be its output length

The following or an equivalent process ber of
bits.

Input:
1. input_string: The string to be hashed

2. ber of bits to be returned by Hash_df. The
ber_of_bits) is implementation dependent, but shall be

i = 0.

 = s ⊕ additional_input. Comment: t is to be interpreted as a seedlen-
bit unsign
be reduced mod n; the operation * will e
this.

6. s = ϕ(x(t ∗ P)). Comment: s is a seedlen-bit number.

7. r

8. temp = temp || (rightmost outlen bits of r).

dditional_input=0 Comm
additional_input_string is added only on the
first iteration.

10. block_counter = block_counter + 1.

 i = i + 1.

12. If (

13 returned_bits = Truncate (temp, i × outlen, requested_number_of_bit

 Return SUCCESS, returned_bits, and s, and block_counter for the
new_working_state.

uxilliary Functions

tion functions are internal functions that are used during DRBG
ng to either derive internal state values or to distribute entropy

tring. Two methods are provided. One m
ck cipher algorithms (see 10.4.2). The
her_Hash function that is specified in Se

Derivati

tion function is used by the Hash_DRBG and
-based derivation function hashes an input

its. Let Hash (...) be the hash function used by
.

shall be used to derive the requested num

.

no_of_bits_to_return: The num
maximum length (max_num

NIST SP 800-90 - Dual_EC_DRBG DRAFT December 2005

72

or equal to (255 × outlen). no_of_bits_to_return is represented as a 32-bit

Output:
1. status: The status returned from Hash

ERROR_FLAG.

2.

Hash_

1. If then return an ERROR_FLAG.

2.

3.

less than
integer.

_df. The status will indicate SUCCESS or

requested_bits : The result of performing the Hash_df.

df Process:

no_of_bits_to_return > max_number_of_bits,

temp = the Null string.

⎥⎥⎢ outlen
⎤

⎢
⎡=

returntobitsofnolen ____ .

4. -bit binary value representing the integer "1".

5.

turn

).

r + 1.

ipher_Hash be the function specified in Section 10.4.3. Let outlen be its output
lock cipher algorithms, and

s.

no_of_bits_to_return: The number of bits to be returned by Block_Cipher_df. The
aximum length (max_number_of_bits) is 512 bits for the currently approved

s.

Output:

counter = an 8

For i = 1 to len do

Comment : In step 5.1, no_of_bits_to_re
is used as a 32-bit string.

5.1 temp = temp || Hash (counter || no_of_bits_to_return || input_string

5.2 counter = counte

6. requested_bits = Leftmost (no_of_bits_to_return) of temp.

7. Return SUCCESS and requested_bits.
10.4.2 Derivation Function Using a Block Cipher Algorithm (Block_Cipher_df)

This derivation function is used by the CTR_DRBG that is specified in Section 10.2. Let
Block_C
block length, which is a multiple of 8 bits for the Approved b
let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input_string: The string to be operated on. This string shall be a multiple of 8 bit

2.
m
block cipher algorithm

1. status: The status returned from Block_Cipher_df. The status will indicate

NIST SP 800-90 - Dual_EC_DRBG DRAFT December 2005

73

2. _bits : The result of performing the Block_Cipher_df.

her_df Process:

bitstring represention of
the integer resulting from len (input_string)/8.

return/8. Comment : N is the bitstring represention of
the integer resulting from
number_of_bits_to_return/8. N shall be
represented as a 32-bit integer.

string length and the

input_string.

3. S = L || N || input_string || 0x80.

 necessary.

4. W ile

ting value.

ment : i shall be represented as a 32-bit

. Comment: The 32-bit integer represenation of

8.2 temp = temp || Block_Cipher_Hash (K, (IV || S)).

i = i + 1.

9.

10. mp.

p = the Null string.

SUCCESS or ERROR_FLAG.

requested

Block_Cip

1. If (number_of_bits_to_return > max_number_of_bits), then return an
ERROR_FLAG.

2. L = len (input_string)/8. Comment: L is the

L shall be represented as a 32-bit integer.

3. N = number_of_bits_to_

Comment: Prepend the
requested length of the output to the

Comment : Pad S with zeros, if

h) m) ≠ 0, S = S || 0x00. (len (S od outlen

Comment : Compute the star

5. temp = the Null string.

6. i = 0. Com
integer, i.e., len (i) = 32.

7. K = Leftmost keylen bits of 0x00010203...1F.

8. While len (temp) < keylen + outlen, do

8.1 IV = i || 0outlen - len (i)

i is padded with zeros to outlen bits.

8.3

Comment: Compute the requested number of
bits.

K = Leftmost keylen bits of temp.

X = Next outlen bits of te

11. tem

NIST SP 800-90 - Dual_EC_DRBG DRAFT December 2005

74

12. ts_to_return, do

.

14. and requested_bits.
10.4

The Block_Encrypt pseudo-function is used
Blo
Recommendation, but has

Block_Encrypt: A basic encryption ope
algorithm. The function call is:

output_block = Block_E

For TDEA, the basic encryption operatio n (see
SP 800-67); for AES, the basic encryptio called the cipher operation (see

ration is equivalent to an encryption operation on a
single block of data using the ECB mode

For e len h of the output block of the
block cipher algorithm

The following or an equivalent process shall f
bits

Inp

1. Key: The key to be used for the block cipher opeation.

data_to_hash
ranteed by steps 4 and 8.1 in Section

Output:

1. ipher_Hash operation.

Block_Ciph
1. chaining_value = 0outlen. Comm

2. n = len (data_to_hash)/outlen.

outlen bits each forming block1 to blockn.

 ⊕ blocki .

 While len (temp) < number_of_bi

12.1 X = Block_Encrypt (K, X).

12.2 temp = temp || X

13. requested_bits = Leftmost number_of_bits_to_return of temp.

 Return SUCCESS
.3 Block_Cipher_Hash Function

 for convenience in the specification of the
ck_Cipher_Hash function. This function is not specifically defined in this

the following meaning:

ration that uses the selected block cipher

ncrypt (Key, input_block)

n is called the forward cipher operatio
n operation is

FIPS 197). The basic encryption ope
.

 the Block_Cipher_Hash function, let outlen be th gt
 to be used.

 be used to derive the requested number o
.

ut:

2. data_to_hash: The data to be operated upon. Note that the length of
must be a multiple of outlen. This is gua
10.4.2.

output_block: The result to be returned from the Block_C

er_Hash Process:
ent: Set the first chaining value to outlen zeros.

3. Split the data_to_hash into n blocks of

4. For i = 1 to n do

4.1 input_block = chaining_value

NIST SP 800-90 - Dual_EC_DRBG DRAFT December 2005

75

_block).

5.

6.

4.2 chaining_value = Block_Encrypt (Key, input

output_block = chaining_value.

Return output_block.

NIST SP 800-90 DRAFT December 2005

76

11 As

A u phic purposes requires assurance that the generator
actu
unpredictable bits. The user needs
assurance that the design of the generator,
its implementation and its use to support
cryptographic services are adequate to
protect the user's information. In addition,
the user requires assurance that the
generator continues to operate correctly.
The assurance strategy for the DRBGs in
this Recommendaion is depicted in Figure
15.

The design of each DRBG in this
Recommendation has received an
evaluation of its security properties prior to
its selection for inclusion in this
Recommendation.

An implementation shall be validated for
conformance to this Recommendation by a NVLAP accredited laboratory (see Section
11.2). The consuming application or cryptographic service that uses a DRBG should also
be validated and periodically tested for continued correct operation. However, this level of
testing is outside the scope of this Recommendation. Such validations provide a higher
level of assurance that the DRBG is correctly implemented. Validation testing for DRBG
processes consists of testing whether or not the DRBG process produces the expected
result, given a specific set of input parameters (e.g., entropy input).

Health tests on the DRBG shall be implemented within a DRBG boundary or sub-
boundary in order to determine that the process continues to operate as designed and
implemented. See Section 11.3 for further information.

A cryptographic module containing a DRBG shall be validated (see FIPS 140-2). The
consuming application or cryptographic service that uses a DRBG should also be validated
and periodically tested for continued correct operation. However, this level of testing is
outside the scope of this Recommendation.

Note that any entropy input used for testing (either for validation testing or health testing)
may be publicly known. Therefore, entropy input used for testing shall not knowingly be
used for normal operational use.
11.1 Minimal Documentation Requirements

This Recommendation requires the development of a set of documentation that will
provide assurance to users and (optionally) validators that the DRBGs in this

surance

ser of a DRBG for cryptogra
ally produces random and

Figure 15: DRBG Assurance Strategy

NIST SP 800-90 DRAFT December 2005

77

ave been implemented properly. Much of this documentation may be
anual. This documentation shall consist of the following as a

or obtaining entropy input.

has been designed to permit implementation

.g., CTR_DRBG, Dual_EC_DRBG), and the
 AES-128, SHA-256).

upported by the implementation.

e implemention (e.g., prediction resistance, the

In the case of the CTR_DRBG, indicate whether a derivation function is provided.
ot used, documentation shall clearly indicate that the
 used when full entropy input is available.

n Validation Testing

all

ptionally perform other self-tests for DRBG

n-answer-tests (see Section 11.3.2) shall not be output

When a DRBG fails a self-test, the DRBG shall enter an error state and output an error
e, and

Recommendation h
placed in a user’s m
minimum:

• Document the method f

• Document how the implementation
validation and health testing.

• Document the type of DRBG (e
cryptographic primitives used (e.g.,

• Document the security strengths s

• Document features supported by th
available elliptic curves, etc.).

•
If a derivation function is n
implementation can only be

• Document any support functions other than health testing.
11.2 Implementatio

A DRBG process shall be tested for conformance to this Recommendation. A DRBG sh
be designed to be tested to ensure that the product is correctly implemented. A testing
interface shall be available for this purpose in order to allow the insertion of input and the
extraction of output for testing.

Implementations to be validated shall include the following:

• Documentation specified in Section 11.1.

• Any documentation or results required in derived test requirements.
11.3 Health Testing

11.3.1 Overview

A DRBG implementation shall perform self-tests to ensure that the DRBG continues to
function properly. Self-tests of the DRBG processes shall be performed as specified in
Section 9.5. A DRBG implementation may o
functionality in addition to the tests specified in this Recommendation.

All data output from the DRBG boundary shall be inhibited while these tests are
performed. The results from know
as random bits during normal operation.

indicator. The DRBG shall not perform any DRBG operations while in the error stat

NIST SP 800-90 DRAFT December 2005

78

it the
see Section 9.6).

11.3

Kn n est
involve ta for which the correct output is already known and
determ he
test i
shall enter an error state and output an

The e be
per m

no pseudorandom bits shall be output when an error state exists. When in an error state,
user intervention (e.g., power cycling, restart of the DRBG) shall be required to ex
error state (

.2 Known Answer Testing

ow -answer testing shall be conducted as specified in Section 9.5. A known-answer t
s operating the DRBG with da
ining if the calculated output equals the expected output (the known answer). T

 fa ls if the calculated output does not equal the known answer. In this case, the DRBG
error indicator (see Section 9.6).

 g neralized known-answer testing is specified in Section 9.5. Testing shall
for ed on all DRBG functions implemented.

NIST SP 800-90 DRAFT December 2005

79

rmative) Application-Specific Constants

EC_DRBG

od p)

otation:

p - Order of the field Fp , given in decimal

r - order of the Elliptic Curve Group, in decimal . Note that r is used here for
consistency with FIPS 186-3 but is referred to as n in the description of the
Dual_EC_DRBG (...)

a – (-3) in the above equation

b - coefficient above

The x and y coordinates of the base point, ie generator G, are the same as for the point P.
A.1.1 Curve P-256

p = 11579208921035624876269744694940757353008614\
3415290314195533631308867097853951

r = 11579208921035624876269744694940757352999695\
5224135760342422259061068512044369

b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e
27d2604b

Px = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0
f4a13945 d898c296

Py = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece
cbb64068 37bf51f5

Qx = c97445f4 5cdef9f0 d3e05e1e 585fc297 235b82b5 be8ff3ef
ca67c598 52018192

Qy = b28ef557 ba31dfcb dd21ac46 e2a91e3c 304f44cb 87058ada
2cb81515 1e610046

Appendix A: (No

A.1 Constants for the Dual_

The Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the
elliptic curve. One of the following NIST approved curves and points shall be used in
applications requiring certification under FIPS 140-2. More details about these curves may
be found in FIPS PUB 186-3, the Digital Signature Standard.

Each of following curves is given by the equation:

y2 = x3- 3x + b (m

N

NIST SP 800-90 DRAFT December 2005

80

A.1.2 Curve P-384

p = 3

 181d9c6e fe814112 0314088f
5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

7ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98
741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7

Py = 3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c

Qx =
d1e89769 124179d0 b6951064 28815065

Qy = 023b1660 dd701d08 39fd45ee c36f9ee7 b32e13b3 15dc0261
f67 1f790f84 c5e09b05 674dbb7e 45c803dd

p = 68647976601306097149819007990813932172694353\

98799971\

r = 68647976601306097149819007990813932172694353\

9753296399637136332111386476861244\

b8b48
3d2c3

4f1ef451 fd46b503 f00

Py = 11839296 a789a3bc 0045c8a5 fb42c7d1 bd998f54 449579b4
46817afb d17273e6 62c97ee7 2995ef42 640c550b 9013fad0

9402006196394479212279040100143613805079739\

27046544666794829340424572177149687032904726\

6088258938001861606973112319

r = 39402006196394479212279040100143613805079739\
27046544666794690527962765939911326356939895\

6308152294913554433653942643

b = b3312fa7 e23ee7e4 988e056b e3f82d19

Px = aa8
59f

e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f

8e722de3 125bddb0 5580164b fe20b8b4 32216a62 926c5750
2ceede31 c47816ed

0aa1b636 e346d

A.1.3 Curve P-521

00143305409394463459185543183397656052122559\

640661454554977296311391480858037121

6643812574028291115057151

00143305409394463459185543183397655394245057\

7463332171

0380340372808892707005449

b = 051953eb 9618e1c9 a1f929a2 1a0b6854 0eea2da7 25b99b31 5f3
9918ef10 9e156193 951ec7e9 37b1652c 0bd3bb1b f073573d f88

Px = c6858e06 b70404e9 cd9e3ecb 662395b4 429c6481 39053fb5
21f828af 606b4d3d baa14b5e 77efe759 28fe1dc1 27a2ffa8
de3348b3 c1856a42 9bf97e7e 31c2e5bd 66

NIST SP 800-90 DRAFT December 2005

81

To insure that the point Q has been generated appropriately, an additional self

86a272c 24088be9 4769fd16 650

2276171
7f722943

Qy = f9430ef 8442c501 8976ff34
d327c0e7

A.2

irs of points, provided
 in

Appen entation
hard-

wi ng_state
ts shall
ndix

A.2.2.

endation, and shall be appropriate for the desired security_strength, as

Th for the selected
curve st one point each
time.)

The p rocedure specified in ANS X9.62. The

A ED, and hash
fu of this
R to Section 10.3.1,
T length of SEED may be larger than m. The hash

If t
be

A.2.2

-test

761353c7 0

Qx = 1b9fa3e5 18d683c6 b6576369 4ac8efba ec6fab44 f
a4272650 7dd08add 4c3b3f4c 1ebc5b12 22ddba07
b24c3edf a0f85fe2 4d0c8c01 591f0be6 f63

 1f3bdba5 85295d9a 1110d1df 1
37ef91b8 1dc0b813 2c8d5c39 c32d0e00 4a3092b7
a4d26d2c 7b69b58f 90666529 11e45777 9de

Using Alternative Points in the Dual_EC_DRBG()

The security of Dual_EC_DRBG() requires that the points P and Q be properly
generated. To avoid using potentially weak points, the points specified in Appendix A.1

uld be used. However, an implementation may use different pasho
that they are verifiably random, as evidenced by the use of the procedure specified

dix A.2.1 below, and the self-test procedure in Appendix A.2.2. An implem
that uses alternative points generated by this Approved method shall have them “

red” into its source code, or hardware, as appropriate, and loaded into the worki
at instantiation. To conform to this Recommendation, alternatively generated poin
use the procedure given in Appendix A.2.1, and verify their generation using Appe

A.2.1 Generating Alternative P,Q

The curve shall be one of the NIST curves from
A.1 of this Recomm

 FIPS 186-3 that is specified in Appendix

specified in Table 4, Section 10.3.1.

e point P shall remain the generator point G given in Appendix A.1
. (This minor restriction simplifies the test procedure to verify ju

oint Q shall be generated using the p
following input is required:

n elliptic curve E = (Fq, a, b), cofactor h, prime n, a bit string SE
nction Hash(). The curve parameters are given in Appendix A.1
ecommendation. The minimum length m of SEED shall conform
able 4, under “Seed length”. The bit

function shall be SHA-512 in all cases.

he output from the ANS X9.62 generation procedure is “failure”, a different SEED must
used.

Otherwise, the output point shall be used as the point Q.
Additional Self-testing Required for Alternative P,Q

NIST SP 800-90 DRAFT December 2005

82

pro ction is invoked. Section
d prior
n of the

gen to
n e of

n). If
the halt with
an

cedure shall be performed whenever the instantiate fun
9.5.1 specifies that known-answer tests on the instantiate function be performe
to creating an operational instantiation. As part of those tests, an implementatio

eration procedure in ANS X9.62 shall be called with the SEED value used
erate the alternate Q. The point returned shall be compared with the sge tored valu

Q used in place of the default value (see Appendix A.1 of this Recommendatio
 generated value does not match the stored value, the implementation shall
error condition.

NIST SP 800-90 DRAFT December 2005

83

B.1

 The bitstring to be converted.

Output:
1. x The requested integer representation of the bitstring.

Process:
1. Let (b1, b2,…, bn) be the bits of b from leftmost to rightmost.

2.

3. Return x.

In this Recommendation, the binary length of an integer x is defined as the smallest integer
n satisfying x < 2n.
B.2 Integer to a Bitstring

Input:
1. x The non-negative integer to be converted.

Output:
1. b1, b2, ..., bn The bitstring representation of the integer x.

Process:

1. Let (b1, b2, ..., bn) represent the bitstring, where b1 = 0 or 1, and b1 is the most
significant bit, while bn is the least significant bit.

2. For any integer n that satisfies x < 2n, the bits bi shall satisfy:

3. Return b1, b2, ..., bn.

In this Recommendation, the binary length of the integer x is defined as the smallest
integer n that satisfies x < 2n.
B.3 Integer to an Octet String

Input:

Appendix B : (Normative) Conversion and Auxilliary Routines

 Bitstring to an Integer

Input:
1. b1, b2,…, bn

()∑
=

−=
n

i
i

in bx
1

2 .

()∑
=

−=
n

i
i

in bx
1

2 .

NIST SP 800-90 DRAFT December 2005

84

1. A non-negative integer x, and the intended length n of the octet string satisfying

Output:

 length n octets.

ost to rightmost.

e octets of O shall satisfy:

x = Σ 2
 i = 1 to n.

B.4 Octet String to an Integer

Input:
 of length n octets.

teger x.

Process:
O1, O2, …, O be the octets of O from leftmost to rightmost.

ined as f

 x = Σ 28(n-i)O

.
B.5 C

The ran of two types:
either a random bitstring of a specified length, or a random integer in a specified interval.
In some cases, a DRBG may return a random number in a specified interval that needs to
be converted into random bits; in other cases, a DRBG returns a random bitstring that
needs t m number in a specific range.

tions sequences of random numbers are required (a0, a1,

 integer ai satisfies 0 ≤ ai ≤ r-1, for some positive integer r (the range of the

 28n > x.

1. An octet string O of

Process:

1. Let O1, O2,…, On be the octets of O from leftm

2. Th
8(n-i)Oi

for

3. Return O.

1. An octet string O

Output:
1. A non-negative in

1. Let n

2. x is def ollows:

i

for i = 1 to n.

3. Return x
onverting Random Numbers from/to Random Bits

dom values required for cryptographic applications are generally

o be converted to a rando
B.5.1 Converting Random Bits into a Random Number

In some cryptographic applica
a2,…) where:

i) Each

NIST SP 800-90 DRAFT December 2005

random numbers);

85

probability almost exactly 1/r, for any i ≥ 0 and for
0 ≤ s ≤ r-1);

iii) of any set of values aj (j ≠ i).

Fou es are specified for generating sequences of random numbers from sequences
of random

If the ra ai ≤ b rather than 0 ≤ ai ≤ r-1, then a random
number ed by computing ai + a, where ai is a random
number in the rang (that is, when r = b-a+1).
B.5.1.1 The Simple Discard Method

Let m b f bits needed to represent the value (r–1). The following method
m number a:

e random bit generator to generate a sequence of m random bits, (b0, b1, …,

ii) The equation ai = s holds, with
any s (

Each value ai is statistically independent

r techniqu
 bits.

nge of the number required is a ≤
 in the desired range can be obtain

e 0 ≤ ai ≤ b-a

e the number o
may be used to generate the rando

1. Use th
bm-1).

2. Let ∑
−

=0

2 i
i b .

3. If card c and go to Step 1.

Thi roduces a random number a with no skew (no bias). A possible
disadva ch a random
a is not i se of the conditional loop.

The ratio r/2m the efficiency of the technique, and this ratio will always
satisfy 0.5 < r/2 r/2 ethod is simple and efficient.
However, i o 0.5, then the simple discard method is less efficient, and the
more co below is recommended.

,

2. Let

1m

=
i

c

c < r then put a = c, else dis

s method p
ntage of this method, in general, is that the time needed to generate su
 a f xed length of time becau

is a measure of
m ≤ 1. If m is close to 1, then the above m

f r/2m is close t
mplex method

B.5.1.2 The Complex Discard Method

Choose a small positive integer t (the number of same-size random number outputs
desired), and then let m be the number of bits in (rt –1). This method may be used to
generate a sequence of t random numbers (a0, a1, … , at-1):

1. Use the random bit generator to generate a sequence of m random bits, (b0, b1, …
bm-1).

∑=
−

=

2 bc .

t , then

1m
i

0i
i

3. If c < r

let (a0, a1, …, at-1) be the unique sequence of values satisfying 0 ≤ ai ≤ r -1 such

NIST SP 800-90 DRAFT December 2005

that ∑
−

=

 to Step 1.

Thi ible

gth of time because of the conditional loop. The complex discard method

, and this ratio will always
, it is recommended to choose t so that t is the

(as
sim
B.5.1.3 The d

Let number of bits needed to represent the value (r–1), and let s be a security
parameter. The following method may be used to generate one random number a:

 m+s random bits, (b0, b1,

=
1t

i arc
0i

i

else discard c and go

s method produces random numbers (a0, a1, … , at-1) with no skew. A poss
disadvantage of this method, in general, is that the time needed to generate these numbers
is not a fixed len
is guaranteed to produce a sequence of random outputs for each iteration and, therefore,
may have better overall performance than the simple discard method if many random
numbers are needed.

t m ciency of the techniqueThe ratio r /2 is a measure of the effi
satisfy 0.5 < rt/2m ≤ 1. Hence, given r
smallest value such that rt/2m is close to 1. For example, if r = 3, then choosing t = 3
means that m = 5 (as rt is 27) and rt/m = 27/32 ≈ 0.84, and choosing t = 5 means that m = 8

t tr is 243) and r /m = 243/256 ≈ 0.95. The complex discard method coincides with the
ple discard method when t = 1.

Simple Modular Metho

m be the

1. Use the random bit generator to generate a sequence of
…, bm+s-1).

2. Let ∑
−+

=

 probability that ai=w for any particular

 /r. However, for a large enough value of s, the

Cho
desired security parameter s; let m be the number of bits in (r –1). The following
method may be used to generate a sequence of t random numbers (a0, a1, …, at-1):

it generator to generate a sequence of m+s random bits, (b0, b1,
…, b).

=
1

2
sm

i
i bc .

0i

3. Let a=c mod r.

The simple modular method can be coded to take constant time. This method produces a
random value with a negligible skew, that is, the
value of w (0 ≤ w ≤ r-1) is not exactly 1
difference between the probability that ai=w for any particular value of w and 1/r is
negligible. The value of s shall be greater than or equal to 64.
B.5.1.4 The Complex Modular Method

ose a small positive integer t (the number of same-size random number outputs
) and a t

1. Use the random b
m+s-1

86

NIST SP 800-90 DRAFT December 2005

87

2. Let
1

0
2

sm

i
i

i b mod rt.

3. e sequence of values satisfying 0 ≤ ai ≤ r-1 such

∑
−+

=

 =c

Let (a0, a1, …, at-1) be the uniqu

that ∑
−

=

ar
ith

 is, the probability that a =w for any particular value of w (0 ≤ w ≤ r-

 s

h Extraction) Method

and

For
bits, from t, and to partition the possible values of r into disjoint sets based on
the ize of rand bits that might be extracted. As a small example, if n = 11, then
the binary representation of n is b’1011’, and the possible values of r (in binary) are as
follows:

it

 extracted as unbiased
s of [0000, 0001, 0010, 0011, 0100, 0101, 0110,

10,
d

 and the

4. it of n is b‘0’, the 3rd bit of r is always b‛0’ in the class determined in
step 3; therefore the 3rd bit of r is already known to be biased, so the analysis
moves to the next bit (step 5).

=
1

0

t

i
i

iarc .

The complex modular method is guaranteed to produce a sequence of random outputs with
each iteration and, therefore, may have better overall performance than the simple modul
method if many random numbers are needed. This method produces a random value w
a negligible skew; that i
1) is not exactly 1/r. However, for a large enough value of s, the difference between the
probability that ai=w for any particular value of w and 1/r is negligible. The value of
shall be greater than or equal to 64. The complex modular method coincides with the
simple modular method when t=1.
B.5.2 Converting a Random Number into Random Bits

B.5.2.1 The No Skew (Variable Lengt

This is a method of extracting random unbiased bits from a random number modulo a
number n. First, a toy example is provided in order to explain how the method works,
then pseudocode is given.

 the toy example, the insight is to look at the modulus n and the random number r as
 left to righ

 largest s om

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010.

Let the leftmost bit be considered as the bit 4, and the rightmost bit be considered as the b
1.

1. As the 4th bit of n is b‛1’, look at the 4th bit of r.

2. If the 4th bit of r is b‘0’, then the remaining 3 bits can be
random bits. This forms a clas
0111] and maps each respective element into the 3-bit sequences [000, 001, 0
011, 100, 0101, 110, 111], each of which is unbiased, and the process is complete

3. If the 4th bit of r is b‛1’, then r falls into the remainder [1000, 1001, 1010],
process needs to continue with step 4 in order to extract unbiased bits.

As the 3rd b

NIST SP 800-90 DRAFT December 2005

88

5. n is b‘1’, so this forms a subclass [1000, 1001], from which one random
 bit can be , namely the 1st bit.

ran its can be tracted; 2/11 of the time, 1 unbiased bit can be extracted; and
1/11, no unbiased bits can be extracted. As can be seen, it is not known ahead of time

Comment: if n(i) = b‘0’, or r(i) = b‘1’, then
ew situation; the routine cannot

extract i-1 unbiased bits, so the index is
to check next bit

ction takes a variable amount of time, but this varying amount of time does not
leak an ethod.

A p Extraction) Method of
Ap d to extract a variable number of
random ng
method his
method

1.

This m hen the high order bits of the modulus are all set to

The 2nd bit of
unbiased extracted

The remaining value of 1010 cannot be used to extract random bits. However,
obtaining this value is not usual. For this tiny example: 8/11 of the time, 3 unbiased

dom b ex

how many unbiased bits will be able to be extracted, although the average will be
known.

Let both the modulus n and the random r values have m bits. This means that n(m) = b‘1’,
although r(m) may be either b‘1’ or b‘0’.

1. outlen = 0.

2. Do i = m to 1 by –1

this is a sk

shifted right

2.1 If ((n(i) = b‘0’) or (r(i) = b‘1’)), then go to step 2.5.

2.2 outlen = i-1.

2.3 output = r(outlen,1).

2.4 i = 1 Comment: all unbiased bits possible
have been extracted, so exit .

2.5 Continue

The extra
y information to a potential adversary that can be used to attack the m

B.5.2.2 The Negligible Skew (Fixed Length Extraction) Method

ossible disadvantage of the No Skew (Variable Length
pen ix B.5.2.1 is that it takes a variable amount of time

 bits. To address this concern and to simplify the extraction method, the followi
 is specified that extracts a fixed length of random bits with a negligible skew. T
 exploits the fact that the modulus n is known before the extraction occurs.

Examine the modulus considered as a binary number from left to right, and
determine the index bit such that there are at least 16 b‘1’ bits to the left. Call this
bit i.

2. Extract random bits from the random number r by truncating on the left up to bit i.
This is the output = r(i,1).

ethod is especially appropriate w

NIST SP 800-90 DRAFT December 2005

89

Thi the following analysis. When
con hat less
tha
ran n
of t
onl
num occurs about once every 2 times. As the modulus is at least 160 bits, this

ost bit or bits tending to a binary zero bit or bits.
Thi as little as one bit. However, an adversary will not know exactly
where this skewed substring occurs. The 9,437,184 total output bits will still be
overwhelm in the statistical variation of
the statistical variation almost certainly will

b‘1’ for efficiency reasons, as is the case with the NIST elliptic curves over prime fields.

s method is acceptable for elliptic curves, based on
sidering the no skew method, once the random bits are extracted, it is obvious t
n the full number of random bits can be extracted, and the extraction result will still be
dom. The truncation of more bits than necessary is acceptable. What about truncatio
oo few bits? For a random number, the no skew extraction process would continue
y if the 16 bits of r corresponding to the b‘1’ bits in n are all zero. For a random
ber, this 16

means that 144 bits with a skew are extracted in this case. On average, once every
9,437,184 output bits (or more), there will be a 144-bit substring somewhere in that total
that has a skew, which will have the leftm

s skew could be

ingly likely to be with a random bitstring; that is,
be much greater than this negligible skew.

NIST SP 800-90 DRAFT December 2005

Appendix C: (Normative) Entropy and Entropy Sources

90

’t

ict or
d

w

ependent on the probabilities associated with the possible results for a given “event” (e.g.,
 a coin).

In this Recommendation, entropy is relative to an adversary and his ability to observe or
predict a value. If the adversary has no uncertainty about the value, then the entropy is zero
(and so is the security of the consuming application that relies on the DRBG). Any
assessment of the entropy of a particular value is actually an assessment of how much of
the value is unknown to the adversary.
C.2 Entropy Source

Entropy is obtained from an entropy source. The entropy input required to seed or reseed a
DRBG shall be obtained either directly or indirectly from an entropy source (see Appendix
D for information on RBG construction). The entropy source is the critical component of
an RBG that provides un-guessable values for the deterministic algorithm to use as entropy
input for the random bit generation process.

Every entropy source must include some process that is unpredictable. An intuitive
(although usually impractical) example is tossing a coin and recording the sequence of
heads and tails. More likely, the entropy source will be an electronic process, such as a
noisy diode, which receives a constant input voltage level and outputs a continuous,
normally distributed analog voltage level. Other possibilities include thermal noise or
radioactive decay that are measured by appropriate instruments. The unpredictability could
involve human interaction with an otherwise deterministic system, such as the sampling of
a high-speed counter whenever a human operator presses a key on a keyboard. In any case,
there shall be something happening that is unpredictable to an adversary, either
fundamentally unpredictable (e.g., when the next particle is detected by a Geiger counter),
or unpredictable from a practical point of view (e.g., the adversary won’t know the exact
value of a high-speed counter if he isn’t close enough to the human pressing a key).

An examination of the DRBG algorithms in this Recommendation reveals a common
feature: each of them takes entropy input, produces a seed and applies an algorithm to
produce a potentially large number of pseudo-random bits. The most important feature of
the interaction between the entropy input and the algorithm is that if an adversary doesn
know the entropy input, then he can’t tell the difference between the pseudo-random bits
and a stream of truly random bits, let alone predict any of the pseudorandom bits. On the
other hand, if he knows (or can guess) the entropy input, then he will be able to pred
reproduce the pseudorandom bits. Thus, the security of the DRBG output is directly relate
to the adversary’s inability to guess the entropy input.
C.1 What is Entropy ?

The word “entropy” is used to describe a measure of randomness, i.e., a description of ho
hard a value is to guess. Entropy is a measure of uncertainty or unpredictability and is
d
a throw of a die or flip of

NIST SP 800-90 DRAFT December 2005

91

Figure C-1 p a noisy
diode or a co gitized).

its,
re

 it may be
 the

 and use of entropy sources is currently under development and
is expected to be provided as a NIST Recommendation in the future.

ned from an entropy source shall be assessed
ote

al

py.

ore

rovides a generic model for an entropy source. A noise source (e.g.,
in flip) provides the entropy, which is then converted to bits (i.e., di

Some entropy sources will perform further processing (conditioning) on the resulting b
guaranteeing unbiased output. An entropy source may process the bits to the point whe
the output bitstring will have full entropy; i.e. the entropy of the bitstring will be (nearly)
the same as its length. In this case, the entropy source will usually include a conditioning
routine, and the entropy source is often
called a conditioned entropy source.

An assessment is made of the amount of
entropy that has been obtained. Typically,
this assessment is performed directly on

ENTROPY
SOURCENoise

Source

the digitized data, although
perfomed on the data resulting from

Digitalization

(Optional)
Conditioning

Assessment
Health
Testingconditioning process (see Appendix C.3).

Health tests are performed to determine
that the entropy source is performing
correctly.

Before an entropy source is selected for
providing entropy input to a DRBG, a
thorough evaluation of the amount of
entropy it is capable of providing shall be
performed.

OUTPUT

Figure C-1: Entropy Source Model

Guidance on the selection

C.3 Entropy Assessment

A DRBG requires a predetermined amount of entropy in the entropy input that is used to
seed or reseed an instantiation in order to provide the requested DRBG security strength.
Therefore, the amount of actual entropy obtai
before providing it as entropy input. A means of measuring the entropy is required. N
that the actual entropy provided in a given string of entropy input bits is less than or equ
to the length of that bitstring; i.e., each bit of the entropy input has (at most) one bit of
entropy; multiple bits of the entropy input may be required to provide one bit of entro

There are many entropy measures defined in information theory; this Recommendation
uses a very conservative measure that is known as min-entropy (Hmin). Suppose that the
digitized Noise Source produces one of n possible outputs at each sampling, with the ith
possible outcome having a probability of pi. The min-entropy of the outputs is:

Hmin = −lg2(pmax)

where pmax is the maximum probability of the pi . Hmin is expressed in bits. Another, more
commonly used measure of entropy is Shannon entropy. However, min-entropy is a m

NIST SP 800-90 DRAFT December 2005

92

s
 indicated in column 2. The probability of each

iode and is provided in column 3. Note that other

requires obtaining numerous samples, where
e of event. Once sufficient samples have been
rted to bits (e.g. an analog voltage will be

s could be mapped to ones and zeros).

igitaization Ranges and Probabilities

Sampled Voltage Digitized Output Probability (pi)

conservative estimate of entropy than Shannon entropy, since min-entropy is always less
than Shannon entropy. Therefore, the more conservative estimate is used in this
Recommendation

For example, suppose that a noisy diode is used as a source of entropy, and that the diode
has possible voltages divided into 16 intervals (column 1), with each interval assigned a 4-
bit string value from 0000 to 1111 (column 2). Whenever the diode is sampled, the result i
digitized and converted to the 4-bit value
interval has been determined for this d
diodes may behave differently.

Collecting entropy from an entropy source
each sample is the result from a given typ
gathered, they generally need to be conve
mapped to some digital value, or coin tosse

Table C-1 : Voltages D

5.2<<∞− Z 0000 0.000233

35.2 <≤ Z 0001 0.001117

5.33 <≤ Z 0010 0.004860

45.3 <≤ Z 0011 0.016540

5.44 <≤ Z 0100 0.044057

55.4 <≤ Z 0101 0.091848

5.55 <≤ Z 0110 0.149882

65.5 <≤ Z 0111 0.191462

5.66 <≤ Z 1000 0.191462

75.6 <≤ Z 1001 0.149882

NIST SP 800-90 DRAFT December 2005

Sampled Voltage Digitized Output Probability (pi)

7 5.7<≤ Z 1010 0.091848

85.7 <≤ Z 1011 0.044057

5.88 <≤ Z 1100 0.016540

95.8 <≤ Z 1101 0.004860

5.99 <≤ Z 1110 0.001117

∞<≤ Z5.9 1111 0.000233

For this diode, iti 1 a h a probability
of 0.191462. Therefore, pmax = 0.191462. Using the min-entropy formula above:

Hmin = − 2(pmax) = 0.19462) = 2

This means that for each 4-bit sample from
expected.

One useful fact about min-entropy is that if two samples are independent (e.g., samplings
of the same noisy diode), then the entropy r concatenati m of their
entropy. This makes sense; if the samples are independent, then guessing one sample
provides no information for guessing another one. If various events are concatenated, then
the min-entropy for each event is added to find the min-entropy of the concatenated events.
In the noisy diode example, if a sample ha 2.38487 bits, then ten
samples taken together have a min-entropy ples have
a min-entropy of 238.487 bits.

These entropy measures relate directly to the security strengths of the Approved DRBG
algorithms. When the entropy source is used to provide entrop
sample will provide a bitstring, along with sessed amoun y in that bitstring.
If a single sample does not provide sufficient entropy for the DRBG, a sequence of
bitstrings are obtained and concatenated w h other until the entropy
assessments for the samples is equal to or greater than the entropy required by the DRBG.
For example, to provide entro y input that ropriate to in DRBG with a
security strength of 128 bits, at least 54 sam
53.67 ≈ 54) and would result in a bitstring of 216 bits to provide at least 128 bits of
entropy.

 the most likely dig zed outputs are 011 nd 1000, each wit

lg −lg2(.38487.

 this diode, an entropy of 2.38487 bits is

 of thei on is the su

s a min-entropy of
of 23.8487 bits, and one hundred sam

y input for a DRBG, each
t of entrop the as

ith eac the sum of

p is app
plings of the diode ar

stantiate a
e required (128/2.38487 =

93

NIST SP 800-90 DRAFT December 2005

94

C.4 Coin Flipping Entropy Source Example

Coin flipping (sometimes called coin tossi erhaps the m tforward example
of an entropy source, although it may be im ical to actuall ny cases.
However, for the occasional seeding of a DRBG when other entropy sources are not
available, coin flipping may b appropriat Recommend s the generation
of random bits as the entropy input for a DRBG using this coin-flipping process when
strict procedures are used to e force accur of the proce ct the secrecy of
the results.

The coin flipping procedure d scribed her be used as an urce because of
the indepence of the coin flips. The procedure is as follows:

1. Select a single coin to be used for the procedure.

2. Determine the entropy requirement (x) for the DRBG to be instantiated.

3. Flip the coin until at least x heads a ils have appeared, recording each coin flip
result in order. Note that there will be at least 256 coin flips, and possibly several

lue.

5. The entire string input.

ng) is p
pract

ost straigh
y use in ma

e e. This ation allow

n ate use ss and prote

e e may entropy so

nd x ta

more.

4. Convert each head to either a zero or a one; convert each tail to the other va

 of zeroes and ones shall be used as the entropy

NIST SP 800-90 DRAFT December 2005

95

Random Bit Generator (RBG) from

ng

t may be 1) an Approved
No n Approved DRBG (or chain of
Ap ts may be
hel

 source output in order to produce an output

Recommendation. To form a chain of DRBGs (see the
chain of two DRBGs in Figure D-2), the entropy input
for the instantiation of the first DRBG (the highest
DRBG in the chain) shall be obtained from a “true”
source of entropy (i.e., an Approved NRBG or an
Approved entropy source). Each subordinate DRBG is
instantiated with entropy input acquired from an
entropy request to a higher DRBG in the chain; the
entropy input shall contain sufficient entropy to
support the requested security strength for the
subordinate DRBG. The security strength provided by
the higher level DRBG shall be equal to or greater
than the security strength of any subordinate DRBG.

c. An entropy source provides entropy source output (see
Appendix C.1). This entropy source output may be used as th
DRBG; i.e., the entropy input source may be the output of an
DRBG A and the entropy input from the entropy source in Fi
Approved entropy source by itself (i.e., not part of an NRBG
provide full entropy. However, the entropy resource will prov
the amount of entropy available in the output.

Appendix D: (Normative) Constructing a
Entropy Sources and DRBG Mechanisms

This Recommendation is primarily concerned with the DRBG algorithms for generati
pseudorandom outputs and how they are to be implemented. Some discussion of entropy
sources that may be used to provide entropy input are provided in Appendix C. This
appendix briefly describes how to combine the entropy source with a DRBG mechanism to
create an Approved RBG.
D.1 Entropy Input for a DRBG

Section 8.6.5 states that the source of a DRBG’s entropy inpu
n-deterministic Random Bit Generator (NRBG), 2) a
proved DRBGs) or 3) an Approved entropy source. A clarification of concep
pful at this point.

a. An NRBG contains an entropy source (see Appendix
C.1) and performs algorithmic processing on the
entropy

ENTROPY SOURCE
(See Figure C-1)

with full entropy (see Figure D-1).

ALGORITHMIC
PROCESS-

ING

FULL ENTROPY
OUTPUT

G

b. A DRBG is defined in the body of this

Figure D-1: NRB
e entropy input for a
 entropy source (see
gure D-2). An
) may or may not
ide an assessment of

NIST SP 800-90 DRAFT December 2005

96

A
a
When designing such

ormation from
 provides

ay not be readily
ava
persiste
D.2 A

D

The ic “features” that an RBG
can off rediction resistance is
practic e entropy input source must
provide ended for the DRBG. The
entropy er requested (i.e., entropy is
readily put source may provide
entropy ay, in
practic). In any event, the entropy
input m re (i.e., private and authentic)
channe
D.2.1

The ide e entropy input source that
provides entropy input (immediat
bits

When t
instanti
honore
outputs

Upon e quest is returned to the calling
function (i.e., the instantiate or reseed function). A failure of the entropy input source has
the following consequences:

 (complete) RBG that incorporates a DRBG
lso includes the source of entropy input.

 an RBG, there are a

DRBG B
(see Figure 1)

DRBG B
(see Figure 1)

DRBG A
(see Figure 1)

DRBG A
(see Figure 1)

ENTROPY
SOURCE

(see Figure C-1)

ENTROPY
SOURCE

(see Figure C-1)

NRBG
(see Figure D-1)

NRBG
(see Figure D-1)

number of concerns to be addressed in
addition to the DRBG to be selected,
including the entropy input source to be used,
how readily the entropy input to the DRBG
can be provided, and how the DRBG
maintains its internal state inf

OR

Entropy Input

one request to the next. Appendix G
a discussion on DRBG selection, and
Appendix C provides some basic discussion
on entropy sources. This appendix includes
discussions about using entropy input sources
whose output may or m

Entropy Input

Pseudorandom
Output

ilable and discusses internal state
nce.
vailability of Entropy Input for a
RBG Figure D-2: Chain of DRBGs

 choice of an entropy input source will determine the specif
er a consuming application (e.g., whether reseeding or p
al). Whenever entropy input is requested by a DRBG, th
 sufficient entropy to support the security strength int
 input source may be able to provide entropy whenev

 available on demand). On the other hand, the entropy in
 too slowly to honor “frequent” requests (e.g., the entopy input source m

e, be able to provide entropy only during instantiation
ust be provided to the DRBG mechanism via a secu
l.
Using a Readily Available Entropy Input Source

al situation for a DRBG is to have ready access to som
ely) upon request. The entropy input source provides

trings, along with a promise about how much entropy is available.

he DRBG has a readily available source of entropy input, reseeding and
ation can be performed on demand, requests for prediction resistance can be
d, and a DRBG can be reseeded when it has produced the maximum number of
 (i.e., the reseed_interval is reached).

ach request for entropy input, the status of the re

NIST SP 800-90 DRAFT December 2005

97

tected, the DRBG functions are designed to
error state (see Section 9.6). No further output is

d.

detected, the DRBG will continue to provide
vailable in the internal state.

g instantiation, an undetected failure would be
ld totally fail to provide the promised security

be taken to ensure that a DRBG is

stantiation, a request for prediction
on resistance being provided; however, the

 based on whatever entropy had previously

r during a normal reseed (at the end of the
d_interval), the security strength of the output would be based on whatever

ed. If the implemented reseed_interval is the
 the DRBG (then

urity provided by the DRBG algorithm is no longer assured. Therefore, the

;

(e.g., when a user is moving the mouse around on a laptop).

nal entropy from inputs provided by
the user or consuming application as additional_input. For this reason, the DRBG

ns,

s
n many environments, the internal state can

me,

• If the failure of the entropy source is de
return an error status and enter the
produced until the failure is correcte

• If the failure is not immediately
output, based on the entropy currently a

If the failure occured prior to or durin
catastrophic, as the DRBG wou
strength. Therefore, extreme care must
instantiated with sufficient entropy.

If the failure occurred subsequent to in
resistance would not result in predicti
security strength of the output would be
been obtained.

If the failure occured prior to o
resee
entropy had previously been obtain
maximum that can be supported by
the sec

see the tables in Section 10),

use of a reseed_interval that is significantly less than the maximum interval is
recommended. This would provide additional time for the entropy source failure to
be detected.

D.2.2 No Readily Available Entropy Input Source

Many implementations of DRBGs will not have ready access to an entropy input source
however, a DRBG must be instantiated at a time when the DRBG actually does have
access to some reliable entropy input source. In some applications, the entropy input
source is only available during manufacture or device setup; in others, it is occasionally
available

Over time, a DRBG may be able to accumulate additio

implementation should accept additional input whenever possible. Implementations that
have values that may have some entropy, such as timestamps or nonces from protocol ru
should provide these values to the DRBG as additional inputs.
D.3 Persistence Considerations

A DRBG is provided with entropy input during instantiation, and the instantiation exist
for as long as the internal state is maintained. I
be maintained for a very long time because power is continually available during that ti
or the internal state is stored in persistent memory that is not affected by power
fluctuations.

NIST SP 800-90 DRAFT December 2005

98

Ho v
the per
withou ore the internal state); any DRBG whose
inte ., to
pro e
random n may be to
instanti
interna Let
the DR BGsource;
let the ed.

DRBG ilable,
and the
availab
provide , which must have been instantiated when sufficient entropy was
availab card
whose
receive
Figure

The fol
is an ad

1.
requested output and provides it to DRBGshort-lived as entropy input for

sing DRBGshort-lived may provide

g

source
ted at least once before the

we er, there are environments in which a DRBG does not have continual power, and
sistent memory may have limitations on the number of times that it can be changed
t failing (e.g., flash memory is used to st

rnal state is saved in this limited access memory should be used conservatively, i.e
vid outputs and changes to the internal state as infrequently as possible. If several

 values are required whenever power is available, then a prudent desig
ate a second DRBG from the DRBG using the limited access memory to store its
l state. The second DRBG’s internal state may not reside in persistent memory.
BG using the limited access memory to store the internal state be called DR
second DRBG be called DRBGshort-liv

source can be used to instantiate DRBGshort-lived whenever power becomes ava
 DRBGshort-lived instantiation only exists for as long as the power continues to be
le. The security strength of DRBGshort-lived is dependent on the security strength
d by DRBGsource
le as specified in Appendix D.1. An example of this case might be a smart
DRBGsource is instantiated by the manufacturer or issuer, and the smart card only
s power thereafter when inserted into a smart card reader. This case is depicted in
D-2 by considering DRBG B to be DRBGshort-lived.

lowing is a common method for interacting between the two DRBGs. The method
aptation of a concept that uses seed files in currently implemented RBGs.

Whenever power is available, a generate request is sent to DRBGsource. DRBGsource
generates the
instantiation. The consuming application u
additional input to DRBGshort-lived as a personalization_string during the
instantiation process.

2. After DRBGshort-lived provides one or more outputs as requested by its consumin
application, k-bits of additional output are generated by DRBGshort-lived , where k ≥
3/2 security_strength. The k-bit output, along with any other application data that
might contain entropy, is provided as additional_input to DRBGsource in a generate
request at some time before the power is removed. This will result in an update of
the internal state of DRBGsource. Any resulting output from this request is ignored.

If DRBGshort-lived generates a large number of outputs or persists for a long period of
time, and it is unknown how long the power will be available, DRBG should
periodically perform this process to ensure that it is upda
power is removed.

NIST SP 800-90 DRAFT December 2005

99

r

Appendix E: (Informative) Security Considerations when Extracting Bits in
the Dual_EC_DRBG (...)

E.1 Potential Bias Due to Modular Arithmetic for Curves Over Fp

Given an integer x in the range 0 to 2N-1, the rth bit of x depends solely upon whethe

⎥⎦
⎥

⎢⎣
⎢

r

x
2

is odd or even. If all of the values in this range are sampled uniformly, the rth bit will

be 0 exactly ½ of the time. But if x is restricted to F , i.e., to the range 0 to p-1, this
statement is no longer true.

P

 no

.

e

ow in Appendix E.2.

In a tru
observe d by
the alg bits,
those b ade to have nearly “full strength”, in the sense that the
entropy that they are missin

To illus
that all e
also tha
time, th
254 of
This is a simple consequence of the fact that only about 1/2 of
occur i

The "ab
differen , and the actual number of points on the curve (which is
always within 2 * p of p). For the NIST curves, these differences won't matter at the scale
of the results, so they will be ignored. This allows the heuristics given here to work for any
curve with "about" (2m)/f points, where f = 1 is the curve's cofactor.

The basic assumption needed is that the approximately (2m)/(2f) x coordinates that do occur
are "uniformly distributed": a randomly selected m-bit pattern has a probability 1/2f of
being an x coordinate. The assumption allows a straightforward calculation,--albeit

By excluding the k = 2N – p values p, p+1, ..., 2N –1 from the set of all integers in ZN, the
ratio of ones and zeroes in the rth bit is altered from 2N-1 / 2N-1 to a value that can be
smaller than (2N-1 – k)/ 2N-1. For all the primes p used in this Recommendation, k/2N-1 is
smaller than 2-31. Thus, the ratio of ones and zeroes in any bit is within at least 2-31 of 1.0

To detect this small difference from random, a sample of 264 outputs is required before th
observed distribution of 1’s and 0’s is more than one standard deviation away from flat
random. This effect is dominated by the bias addressed bel

E.2 Adjusting for the missing bit(s) of entropy in the x coordinates.

ly random sequence, it should not be possible to predict any bits from previously
d bits. With the Dual_EC_DRBG (...), the full output block of bits produce

orithm is “missing” some entropy. Fortunately, by discarding some of the
its remaining can be m

g is negligibly small.

trate what can happen, suppose that a mod p curve with m = 256 is selected, and
 256 bits produced were output by the generator, i.e. that outlen = 256 also. Suppos
t 255 of these bits are published, and the 256-th bit is kept “secret”. About ½ the
e unpublished bit could easily be determined from the other 255 bits. Similarly, if
the bits are published, about ¼ of the time the other two bits could be predicted.

m all 2 bitstrings of length m
n the list of all x coordinates of curve points.

outs" in the preceding example can be made more precise, taking into account the
ce between 2m and p

½

NIST SP 800-90 DRAFT December 2005

100

2

0=

E is the entropy.

of 1+
(2f-1)/2 is the probability that any particular string occurs in an coordinate; j = (j*2)/2

tropy (randomness).

approximate--for the entropy in the rightmost (least significant) m-d bits of
Dual_EC_DRBG output, with d << m.

d

The formula is ()[] jj
dddm ppjzbinomprobE 2log2,,22∑ − −−= , where

j

The term in braces represents the approximate number of (m-d)-bitstrings that fall into one
2d categories as determined by the number of times j it occurs in an x coordinate; z =

f x p f m

is the probability that a member of the j-th category occurs. Note that the j=0 category
contributes nothing to the en

The values of E for d up to 16 are:

log2(f): 0 d: 0 entropy: 255.00000000 m-d: 256

log2(f): 0 d: 1 entropy: 254.50000000 m-d: 255

log2(f): 0 d: 2 entropy: 253.78063906 m-d: 254

log2(f): 0 d: 3 entropy: 252.90244224 m-d: 253

f): 0 d: 4 entropy: 251.95336161 m-d: 252 log2(

log2(f): 0 d: 5 entropy: 250.97708960 m-d: 251

log2(f): 0 d: 6 entropy: 249.98863897 m-d: 250

log2(f): 0 d: 7 entropy: 248.99434222 m-d: 249

log2(f): 0 d: 8 entropy: 247.99717670 m-d: 248

log2(f): 0 d: 9 entropy: 246.99858974 m-d: 247

log2(f): 0 d: 10 entropy: 245.99929521 m-d: 246

log2(f): 0 d: 11 entropy: 244.99964769 m-d: 245

log2(f): 0 d: 12 entropy: 243.99982387 m-d: 244

log2(f): 0 d: 13 entropy: 242.99991194 m-d: 243

log2(f): 0 d: 14 entropy: 241.99995597 m-d: 242

log2(f): 0 d: 15 entropy: 240.99997800 m-d: 241

log2(f): 0 d: 16 entropy: 239.99998900 m-d: 240

Observations:

a) The table starts where it should, at 1 missing bit;

b) The missing entropy rapidly decreases;

NIST SP 800-90 DRAFT December 2005

101

 in every
ne bit of entropy is missing in a collection of

10,000 outputs).

alculations, for the mod p curves, it is recomm
implementation shall remove at least the leftmost (most significant) 13 bits of every m-bit

As
 decide to truncate additional bits from

 number retained is a multiple of 8.

lid x-coordinates on an elliptic curve
ld not be used as pseudorandom bits.
rdinates by removing the high order

truncation amounts has been

 more than this amount. The obvious
runcation amount hinders the already
al reason that argues against
e low s bits of each x-coordinate are

p), and letting N(I) denote the
tribution of x-coordinates in [0, p)

 estimates given in [Shparlinski].

 For s < 2277, this inequality is weak
se truncated x-coordinates are
e value of s, the sharper this

the associated truncated x-
eeping truncation to an acceptable

uarantees can be made about the
niform distribution of the resulting truncated quantities.

c) For log2(f) = 0, i.e, the mod p curves, d=13 leaves 1 bit of information
10,000 (m-13)-bit outputs (i.e., o

Based on these c ended that an

output.

For ease of implementation, the value of d should be adjusted upward, if necessary, until
the number of bits remaining , m-d= outlen, is a multiple of 8. By this rule, the
recommended number of bits discarded from each x-coordinate will be either 16 or 17.
noted in Section 10.3.1.4, an implementation may
each x-coordinate, provided that the

Because only half of all values in [0, 1, ..., p-1] are va
defined over Fp, it is clear that full x-coordinates shou
The solution to this problem is to truncate these x-coo
16 or 17 bits. The entropy loss associated with such
demonstrated to be minimal (see the above chart).

One might wonder if it would be desirable to truncate
drawback to such an approach is that increasing the t
sluggish performance. However, there is an addition
increasing the truncation. Consider the case where th

skept. Given some subinterval I of length 2 contained in [0,
number of x-coordinates in I, recent results on the dis
provide the following bound:

| N(I) / (p/2) - 2s / p | < k * log2 p / sqrt p,

where k is some constant derived from the asymptotic
For the case of P-521, this is roughly equivalent to:

(s-1) 277| N(I)- 2 | < k *2 ,

where the constant k is independent of the value of s.
and provides very little support for the notion that the
uniformly distributed. On the other hand, the larger th
inequality becomes, providing stronger evidence that
coordinates are uniformly distributed. Therefore, by k
minimum, the performance is increased, and certain g
u

NIST SP 800-90 DRAFT December 2005

102

The int e examples are considered to be an array of states, identified by
where the

by an implementation. A particular element in the internal state is addressed by

.

ions (e.g., integer

nused internal state. The function

This exam
 A

instantiation (instantiation_nonce); the
nonce i BG is installed (e.g., by a call to the clock or by setting it

The internal state contains values for V, C, reseed_counter, security_strength and
prediction_resistance_flag, where V and C are bitstrings, and reseed_counter,
security_strength and the prediction_resistance_flag are integers. A requested prediction
resistance capability is indicated when prediction_resistance_flag = 1.

In accordance with Table 2 in Section 10.1, the 112 and 128 bit security strengths may be

Appendix F: (Informative) Example Pseudocode for Each DRBG

ernal states in thes
state_handle. A particular state is addressed as internal_state (state_handle),
value of state_handle begins at 0 and ends at n-1, and n is the number of internal states
provided
internal_state (state_handle).element. In an empty internal state, all bitstrings are set to
Null, and all integers are set to 0.

For each example in this appendix, arbitary values have been selected that are consistent
with the allowed values for each DRBG, as specified in the appropriate table in Section 10

The pseudocode in this appendix does not include the necessary convers
to bitstring) for an implementation. When conversions are required, they must be
accomplished as specified in Appendix B.

The following routine is defined for these pseudocode examples:

Find_state_space (): A function that finds an u
returns a status (either “Success” or a message indicating that an unused internal state
is not available) and, if status = “Success”, a state_handle that points to an available
internal_state in the array of internal states. If status ≠ “Success”, an invalid
state_handle is returned.

When the uninstantantiate function is invoked in the following examples, the function
specified in Section 9.4 is called.
F.1 Hash_DRBG Example

ple of Hash_DRBG uses the SHA-1 hash function, and prediction resistance is
supported in the example. Both a personalization string and additional input are allowed.
32-bit incrementing counter is used as the nonce for

s initialized when the DR
to a fixed value) and is incremented for each instantiation.

A total of 10 internal states are provided (i.e., 10 instantiations may be handled
simultaneously).

For this implementation, the functions and algorithms are “inline”, i.e., the algorithms are
not called as separate routines from the function envelopes. Also, the Get_entropy_input
function uses only two input parameters, since the first two parameters (as specified in
Section 9) have the same value.

NIST SP 800-90 DRAFT December 2005

103

support
generat

)

ut_string_length) = 512

F.1

Thi rn a text message and an invalid state handle (-1) when an
 is

s not check the prediction_resistance_flag, since the
iction resistance. However, if a consuming application

th, prediction_resistance_flag),

 status, integer state_handle.

ation_security_strength > 128), then Return (“Invalid

ed. Using SHA-1, the following definitions are applicable for the instantiate,
e and reseed functions and algorithms:

1. highest_supported_security_strength = 128.

2. Output block length (outlen) = 160 bits.

3. Required minimum entropy for instantiation and reseed = security_strength.

4. Seed length (seedlen) = 440 bits.

5. Maximum number of bits per request (max_number_of_bits_per_request) = 5000
bits.

6. Reseed interval (reseed_interval) = 100,000 requests.

7. Maximum length of the personalization string (max_personalization_string_length
= 512 bits.

8. Maximum length of additional_input (max_additional_inp
bits.

9. Maximum length of entropy input (max _length) = 1000 bits.
.1 Instantiation of Hash_DRBG

s implementation will retu
error is encountered. Note that the value of instantiation_nonce is an internal value that
always available to the instantiate function.

Note that this implementation doe
implementation can handle pred
actually wants prediction resistance, the implementation expects that
prediction_resistance_flag = 1 during instantiation; this will be used in the generate
function in Appendix F.1.3.

Instantiate_Hash_DRBG (...):
Input: integer (requested_instantiation_security_streng

bitstring personalization_string.

Output: string

Process:
Comment: Check the input parameters.

1. If (requested_instanti
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 512), then Return (“Personalization_string
too long”, -1).

Comment: Set the security_strength to one of

NIST SP 800-90 DRAFT December 2005

the valid security strengths.

104

gth ≤ 112), then security_strength =

Comment: Get the entropy_input.

 (status ≠ “Success”), then Return (“Catastrophic failure of the entropy_input

must ensure that it wraps when it’s storage

stantiation_nonce = instantiation_nonce + 1.

stantiate algorithm is
provided in steps 7-11.

.

al
state and save the initial values.

Find_state_space ().

, reseed_counter, security_strength,

 (“Success”, state_handle).
F.1.2 Reseeding a Hash_DRBG Instantiation

The implem he status when an error is
encoun

Reseed_Hash_DRBG_Instantiation (...):
Input: integer state_handle, bitstring ad

3. If (requested_instantiation_security_stren
112

Else security_strength = 128.

4. (status, entropy_input) = Get_entropy_input (security_strength, 1000).

5. If
source:” || status, -1).

Comment: Increment the nonce; actual coding

limit is reached.

6. in

Comment: The in

7. seed_material = entropy_input || instantiation_nonce || personalization_string

8. seed = Hash_df (seed_material, 440).

9. V = seed.

10. C = Hash_df ((0x00 || V), 440).

11. reseed_counter = 1.

Comment: Find an unused intern

12. (status, state_handle) =

13. If (status ≠ “Success”), then Return (status, -1).

14. internal_state (state_handle) = {V, C
prediction_resistance_flag}.

15. Return

entation is designed to return a text message as t
tered.

ditional_input.

NIST SP 800-90 DRAFT December 2005

105

Output: string status.

Process:

state_handle.

1. _handle > 9) or (internal_state (state_handle) =
{Null, Null, 0, 0, 0})), then Retur _handle”).

te.

ndle).V, security_strength =
internal_state(state_handle).secu

Additional_input too long”).

Comm

4. (status, entropy_input) = Get_entropy_i 1000).

Comment: The reseed algorithm is provided

py_input || additional_input.

_material, 440).

8. V = seed.

9. C = Hash_df ((0x00 || V), 440).

te the working_state portion

11.

 = V.

.C = C.

urn (“Success”).
ash_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been

Comment: Check the validity of the

If ((state_handle < 0) or (state
n (“State not available for the state

Comment: Get the internal state values
needed to determine the new internal sta

2. Get the appropriate internal_state values, e.g., V =
internal_state(state_ha

rity_strength.

Check the length of the additional_input.

3. If (len (additional_input) > 512), then Return (“

ent: Get the entropy_input.

nput (security_strength,

5. If (status ≠ “Success”), then Return (“Catastrophic failure of the entropy_input
source:” || status).

in steps 6-10.

6. seed_material = 0x01 || V || entro

7. seed = Hash_df (seed

10. reseed_counter = 1.

Comment: Upda
of the internal state.

 Update the appropriate state values.

11.1 internal_state (state_handle).V

11.2 internal_ state (state_handle)

11.3 internal_ state (state_handle).reseed_counter = reseed_counter.

12. Ret
F.1.3 Generating Pseudorandom Bits Using H

NIST SP 800-90 DRAFT December 2005

106

detected. Prediction resistance is requested when prediction_resistance_request = 1.

In t entation, prediction resistance is requested by supplying
prediction_resistance_request = 1 when the

Hash_DRBG (...):

Inp

Output: string status, bitstring pseudora

Process:
he validity of the

1. If ((state_handle < 0) or (state_ha
Null, 0, 0, 0})), then Return (“St l).

2. V = internal_state (state_handle)).C,

iction_resistance_flag.

rs.

s requested”,

ed_security_strength > security_strength), then Return (“Invalid
ll).

put) > 512), then Return (“Additional_input too long”,

6. If ((prediction_resistance_reques
Null).

 instantiate algorithm is inline with
ns, this step has been written as a

on 9.3
n

Section 10.1.1.4. Because of this combined
 Section 9.3.is not required.

7. If ((reseed_counter prediction_resistance_request = 1)), then

his implem
Hash_DRBG function is invoked.

ut: integer (state_handle, requested_no_of bits, requested_security_strength,
prediction_resistance_request), bitstring additional_input.

ndom_bits.

Comment: Check t
state_handle.

ndle > 9) or (state (state_handle) = {Null,
ate not available for the state_handle”, Nul

Comment: Get the internal state values.

.V, C = internal_state (state_handle
reseed_counter = internal_state (state_handle).reseed_counter,
security_strength = internal_state (state_handle).security_strength,
prediction_resistance_flag = internal_state
(state_handle).pred

Comment: Check the validity of the other
input paramete

3. If (requested_no_of_bits > 5000) then Return (“Too many bit
Null).

4. If (request
requested_security_strength”, Nu

5. If (len (additional_in
Null).

t = 1) and (prediction_resistance_flag ≠ 1)),
ot instantiated”, then Return (“Prediction resistance capability n

Comment: Reseed if necessary. Note that
since the
the functio
combination of steps 6 and 7 of Secti
and step 1 of the generate algorithm i

step, step 9 of

> 100,000) OR (

NIST SP 800-90 DRAFT December 2005

7.1 status = Reseed_ Hash_DRBG_Instantiation (state_handle,
additional_input).

7.2 If (status ≠ “Success”), then Return (status, Null).

107

Comment: Get the new internal state values

 (state_handle).C,
andle).reseed_counter.

 additional_input = Null.

t of the

Hashgen routine is also

8. If

w Hash V additiona

9.

that have changed.

7.3 V = internal_state (state_handle).V, C = internal_state
reseed_counter = internal_state (state_h

7.4

Comment: Steps 8-16 provide the res
generate algorithm. Note that in this
implementation, the
inline as steps 9-13.

(additional_input ≠ Null), then do

7.1 = (0x02 || ||).

7.2 V = (V + w) mod 2

l_input
440.

⎥⎥
⎤

⎢⎢
⎡=

outlen
bitsofnorequestedm ___ .

10. data = V.

11. W = the Null string.

i = Hash (data).

13. random_bits = Leftmost (requested_no_of_bits) bits of W.

15.

16. reseed_counter = reseed_counter

13. Update the changed values in the

13.1 internal_state (state_handl

13.2 internal_state (state_handle

12. For i = 1 to m

12.1 w

12.2 W = W || wi.
44012.3 data = (data + 1) mod 2 .

pseudo

14. H = Hash (0x03 || V).

V = (V + H + C + reseed_counter) mod 2440.

 + 1.

Comments: Update the working_state.

 state.

e).V = V.

).reseed_counter = reseed_counter.

 14. Return (“Success”, pseudorandom_bits).

NIST SP 800-90 DRAFT December 2005

108

F.2 HMA

This example of
prediction nsists of a random
value with security_strength/2 bits of entrop
for entropy bits via the Get_entropy_input ngth/2 bits (i.e., by adding
security_st t
in Section

A personalization string is allowed, but additional input is not. A total of 3 internal states
are provide functions and algorithms are written as separate
routines. Also, the Get_entropy_input func
first two parameters (as specified in Section

The internal state contains the values for V, K
where V and C are bitstrings, and reseed_cou ngth are integers.

In acco rity strengths of 112, 128, 192 and 256
may be sup ions are applicable for the
instantiate algorithms:

1. highest_supported_security_strength = 256.

2. tput block (outlen) = 256 bits.

3. mum entropy for the entropy input at instantiation = 3/2
gth (this includes the entropy required for the nonce).

4. 40 bits.

5. of bits per request (max_number_of_bits_per_request) = 7500
bits

6. Res d_ interval) = 10,000 requests.

7. Ma string (max_personalization_string_length)

8. tropy input (max _length) = 1000 bits.
F.2.1

This im an invalid state handle (-1) when an error
is encountered.

Instan

Input: e), bitstring

Outpu

C_DRBG Example

HMAC_DRBG uses the SHA-256 hash function. Reseeding and
resistance are not provided. The nonce for instantiation co

y; the nonce is obtained by increasing the call
call by security_stre

reng h/2 bits to the security_strength value). The Update function is specified
10.1.2.2.

d. For this implementation, the
tion uses only two input parameters, since the
9) have the same value.

ey, reseed_counter, and security_strength,
nter and security_stre

rdance with Table 2 in Section 10.1, secu
ported. Using SHA-256, the following definit
and generate functions and

Ou

Required mini
security_stren

Seed length (seedlen) = 4

Maximum number
.

eed_interval (resee

ximum length of the personalization
= 160 bits.

Maximum length of the en
Instantiation of HMAC_DRBG

plementation will return a text message and

tiate_HMAC_DRBG (...):

integ r (requested_instantiation_security_strength
personalization_string.

t: string status, integer state_handle.

NIST SP 800-90 DRAFT December 2005

Process:

109

ters.

o

trength = 128

t and
the nonce.

entropy_input (min_entropy, 1000).

tropy

Comment: Invoke the instantiate algorithm.

 (entropy_input,

9. If (status ≠ “Success”), then Return (“No available state space:” || status, -1).

ate_handle).

Ins

Input: bitstring lization_string).

unter.

Process:

Check the validity of the input parame

1. If (requested_instantiation_security_strength > 256), then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 160), then Return (“Personalization_string
too long”, -1)

Comment: Set the security_strength t
one of the valid security strengths.

3. If (requested_security_strength ≤ 112), then security_strength = 112

Else (requested_ security_strength ≤ 128), then security_s

Else (requested_ security_strength ≤ 192), then security_strength = 192

Else security_strength = 256.

Comment: Get the entropy_inpu

4. min_entropy = 1.5 × security_strength.

5. (status, entropy_input) = Get_

6. If (status ≠ “Success”), then Return (“Catastrophic failure of the en
source:” || status, -1).

Note that the entropy_input contains the
nonce.

7. (V, Key, reseed_counter) = Instantiate_algorithm
personalization_string).

Comment: Find an unused internal state and
save the initial values.

 (). 8. (status, state_handle) = Find_state_space

10. internal_state (state_handle) = {V, Key, reseed_counter, security_strength}.

11. Return (“Success” and st

tantiate_algorithm (...):

 (entropy_input, persona

Output: bitstring (V, Key), integer reseed_co

NIST SP 800-90 DRAFT December 2005

110

d_material = entropy_input || personalization_string.

2. Set Key to outlen bits of zeros.

4.

6. Return (V, Key, reseed_counter).
F.2.2 Generating Pseudorandom Bits Using HMAC_

The im en
detected.

HMAC_D
Input: d_no_of_bits, requested_security_strength).

Output: string (status), bitstring pseudorandom

Process:
ent: Check for a valid state handle.

handle) =

2. V = internal_state (state_handle). y,
security_strength = internal_stat handle).security_strength,

Comment: Check the validity of the rest of

3. If (requested_no_of_bits > 7500) ny bits requested”,

seed_counter) = Generate_algorithm
unter, requested_number_of_bits).

BG can no longer be used.

ernal_state (state_handle) = {V, Key, security_strength, reseed_counter}.

1. see

3. Set V to outlen/8 bytes of 0x01.

(Key, V) = Update (seed_material, Key, V).

5. reseed_counter = 1.

DRBG

plementation returns a Null string as the pseudorandom bits if an error has be

RBG(...):
integer (state_handle, requeste

_bits.

Comm

1. If ((state_handle < 0) or (state_handle > 2) or (internal_state (state_
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).

Comment: Get the internal state.

V, Key = internal_state (state_handle).Ke
e (state_

reseed_counter = internal_state (state_handle).reseed_counter.

the input parameters.

, then Return (“Too ma
Null).

4. If (requested_security_strength > security_strength), then Return (“Invalid
requested_security_strength”, Null).

Comment: Invoke the generate algorithm.

5. (status, pseudorandom_bits, V, Key, re
(V, Key, reseed_co

6. If (status = “Reseed required”), then Return (“DR
Please re-instantiate or reseed”, Null).

7. int

NIST SP 800-90 DRAFT December 2005

8. Return (“Success”, pseudorandom_bits).

111

Genera

Inp _counter, requested_number_of_bits).

Ou V, Key), integer reseed_counter.

Pro

Return (“Reseed required”, Null, V, Key,

While (len (temp) < requested_no_of_bits) do:

MAC (Key, V).

of_bits) of temp.

ey, V) = Update (additional_input, Key, V).

6. reseed_counter = reseed_counter

F.3 CTR_

This example of CTR_DRBG uses AES-12 nce
capabilities are available, and a block cipher derivation function using AES-128 is used.
Both a s
are availab s separate
routines. T S-128 in the
ECB mode.

The nonce for instantiation (instantiation_no it incrementing counter.
The no
setting it to a fixed valu

The int
where V
always available, th

In accordan
suppor
reseed and

1.

2.

te_algorithm (...):

ut: bitstring (V, Key), integer (reseed

tput: string status, bitstring (pseudorandom_bits,

cess:

1 If (reseed_counter ≥ 10,000), then
reseed_counter).

2. temp = Null.

3

3.1 V = H

3.2 temp = temp || V.

4. pseudorandom_bits = Leftmost (requested_no_

5. (K

 + 1.

7. Return (“Success”, pseudorandom_bits, V, Key, reseed_counter).
DRBG Example Using a Derivation Function

8. The reseed and prediction resista

per onalization string and additional input are allowed. A total of 5 internal states
le. For this implementation, the functions and algorithms are written a
he Block_Encrypt function (specified in Section 10.4.2) uses AE

nce) consists of a 32-b
nce is initialized when the DRBG is installed (e.g., by a call to the clock or by

e) and is incremented for each instantiation.

ernal state contains the values for V, Key, reseed_counter, and security_strength,
 and Key are strings, and all other values are integers. Since prediction resistance is

ere is no need for prediction_resistance_flag in the internal state.

ce with Table 3 in Section 10.2.1, security strengths of 112 and 128 may be
ted. Using AES-128, the following definitions are applicable for the instantiate,

 generate functions:

highest_supported_security_strength = 128.

outlenOutput block length () = 128 bits.

NIST SP 800-90 DRAFT December 2005

112

3.

entropy for the entropy input during instantiation and reseeding

um entropy input length (max _length) = 1000 bits.

7.

8. nal input length (max_additional_input_length) = 800 bits.

9.

10. Ma m quest (max_number_of_bits_per_request) = 4000
bits

11. Res in erval) = 100,000 requests. Note that for this value, the

F.3.1

Update
Input:

ation Function

This im d state handle (-1) when an error
is e function in Section 10.4.2, and uses AES-

Key length (keylen) = 128 bits.

4. Required minimum
= security_strength.

5. Minimum entropy input length (min _length) = security_strength bits.

6. Maxim

Maximum personalization string input length
(max_personalization_string_input_length) = 800 bits.

Maximum additio

Seed length (seedlen) = 256 bits.

ximu number of bits per re
.

eed terval (reseed_int
instantiation count will not repeat during the reseed interval.

The Update Function

 (...):
 bitstring (provided_data, Key, V).

Output: bitstring (Key, V).

Process:
1. temp = Null.

2. While (len (temp) < 256) do

3.1 V = (V + 1) mod 2128.

3.2 output_block = AES_ECB_Encrypt (Key, V).

3.3 temp = temp || ouput_block.

4. temp = Leftmost 256 bits of temp.

5 temp = temp ⊕ provided_data.

6. Key = Leftmost 128 bits of temp.

7. V = Rightmost 128 bits of temp.

8. Return (Key, V).
F.3.2 Instantiation of CTR_DRBG Using a Deriv

plementation will return a text message and an invali
ncountered. Block_Cipher_df is the derivation

NIST SP 800-90 DRAFT December 2005

113

128 ypt function.

No
parame internal state, since prediction resistance is always available.

Ins

tring

Ou

Comment: Check the validity of the input

 (requested_instantiation_security_strength > 128) then Return (“Invalid

sonalization_string

(requested_instantiation_security_strength ≤ 112), then security_strength =

Comment: Get the entropy input.

atus, entropy_input) = Get_entropy_input (security_strength,
gth, 1000).

 (“Catastrophic failure of the entropy

t the nonce; actual coding
 nonce wraps when its

it is reached, and that the counter
ertains to all instantiations, not just this one.

ion_nonce + 1.

ent: Invoke the instantiate algorithm.

ntiate_algorithm (entropy_input,
ion_string).

Comment: Find an available internal state and
ues.

 in the ECB mode as the Block_Encr

te that this implementation does not include the prediction_resistance_flag in the input
ters, nor save it in the

tantiate_CTR_DRBG (...):

Input: integer (requested_instantiation_security_strength), bits
personalization_string.

tput: string status, integer state_handle.

Process:

parameters.

1. If
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 800), then Return (“Per
too long”, -1).

3. If
112

Else security_strength = 128.

4. (st
security_stren

5. If (status ≠ “Success”), then Return
source” || status, -1).

Comment: Incremen
must ensure that the
storage lim
p

6. instantiation_nonce = instantiat

Comm

7. (V, Key, reseed_counter) = Insta
instantiation_nonce, personalizat

save the initial val

8. (status, state_handle) = Find_state_space ().

9. If (status ≠ “Success”), then Return (“No available state space:” || status, -1).

NIST SP 800-90 DRAFT December 2005

114

t: Save the internal state.

ounter).

1. seed_material = entropy_input ||

2. seed_material = Block_Cipher_d rial, 256).

4. nt: 128 bits.

6.

F.3.3 Res on Using a Derivation Function

The implementation is designed to return a t rror is
encoun

Reseed_C (...):
Inp

Outpu

Process:

(internal_state(state_handle) =

state_handle”).

lues.

2. V = internal_state (state_handle).
security_strength = internal_stat

 too long”).

Commen

10. internal_state_ (state_handle) = {V, Key, reseed_counter, security_strength}.

11. Return (“Success”, state_handle).

Instantiate_algorithm (...):
Input: bitstring (entropy_input, nonce, personalization_string).

Output: bitstring (V, Key), integer (reseed_c

Process:

nonce || personalization_string.

f (seed_mate

3. Key = 0128. Comment: 128 bits.

V = 0128. Comme

5. (Key, V) = Update (seed_material, Key, V).

reseed_counter = 1.

7. Return (V, Key, reseed_counter).
eeding a CTR_DRBG Instantiati

ext message as the status when an e
tered.

TR_DRBG_Instantiation
ut: integer (state_handle), bitstring additional_input.

t: string status.

Comment: Check for the validity of
state_handle.

1. If ((state_handle < 0) or (state_handle > 4) or
{Null, Null, 0, 0}), then Return (“State not available for the indicated

Comment: Get the internal state va

V, Key = internal_state (state_handle).Key,
e (state_handle).security_strength.

Additional_input3. If (len (additional_input) > 800), then Return (“

4. (status, entropy_input) = Get_entropy_input (security_strength,
security_strength, 1000).

NIST SP 800-90 DRAFT December 2005

115

6. If (status ≠ “Success”), then Retu ropy

mment: Invoke the reseed algorithm.

unter) = Reseed_algorithm (V, Key, reseed_counter,
itional_input).

 }.

Reseed_algorithm (...):
Input ,

Ou

Pro
input.

k_Cipher_df (seed_material, 256).

Key, V).

ting Pseudorandom Bits Using CTR_DRBG

f an error has been
dete

CT
eger (state_handle, requested_no_of_bits, requested_security_strength,

prediction_resistance_request), b

Output: string status, bitstring pseudora

Pro

Comment: Check the validity of state_handle.

1. If ((state_handle < 0) or (state_ha) =

2. V = internal_state (state_handle).V, Key = internal_state (state_handle).Key,
,

rn (“Catastrophic failure of the ent
source:” || status).

Co

7. (V, Key, reseed_co
entropy_input, add

8. internal_state (state_handle) = {V, Key, reseed_counter, security_strength

9. Return (“Success”).

: bitstring (V, Key), integer (reseed_counter), bitstring (entropy_input
additional_input).

tput: bitstring (V, Key), integer (reseed_counter).

cess:
1. seed_material = entropy_input || additional_

2. seed_material = Bloc

3. (Key, V) = Update (seed_material,

4. reseed_counter = 1.

5. Return V, Key, reseed_counter).
F.3.4 Genera

The implementation returns a Null string as the pseudorandom bits i
cted.

R_DRBG(...):
Input: int

itstring additional_input.

ndom_bits.

cess:

ndle > 4) or (internal_state (state_handle
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).

Comment: Get the internal state.

security_strength = internal_state (state_handle).security_strength

NIST SP 800-90 DRAFT December 2005

reseed_counter = internal_state (state_handle).reseed_counter.

116

Comment: Check the rest of the input

d”,

rength”, Null).

nal_input) > 800), then Return (“Additional_input too long”,

resistance_flag = 1)), then

 status = Reseed_CTR_DRBG_Instantiation (state_handle,
additional_input).

).

orking state values;
trative information was not

affected.

dle).V, Key = internal_state
ounter = internal_state

7.5 reseed_required_flag = 0.

Comment: Generate bits using the generate

8. erate_algorithm
f_bits, additional_input).

status = “Reseed required”), then

9.1 reseed_required_flag = 1.

10. gth).

11.

Generate_algorithm (...):
p

parameters.

3. If (requested_no_of_bits > 4000), then Return (“Too many bits requeste
Null).

4. If (requested_security_strength > security_strength), then Return (“Invalid
requested_security_st

5. If (len (additio
Null).

6. reseed_required_flag = 0.

7. If ((reseed_required_flag = 1) OR (prediction_

7.1

7.2 If (status ≠ “Success”), then Return (status, Null

Comment: Get the new w
the adminis

7.3 V = internal_state (state_han
(state_handle).Key, reseed_c
(state_handle).reseed_counter.

7.4 additional_input = Null.

algorithm.

(status, pseudorandom_bits, V, Key, reseed_counter) = Gen
(V, Key, reseed_counter, requested_number_o

9. If (

9.2 Go to step 7.

internal_state (state_handle) = {V, Key, reseed_counter, security_stren

Return (“Success”, pseudorandom_bits).

In ut: bitstring (V, Key), integer (reseed_counter, requested_number_of_bits)
bitstring additional_input.

NIST SP 800-90 DRAFT December 2005

117

Ou d_counter.

Process:
1. If (reseed_counter > 100,000 n (“Reseed required”, Null, V,

additional_input ≠ Null), then

p = Null.

uested_number_of_bits) do:

.

4. uput_block.

temp.

6. zeros = 0256.

7. (Key, V) = Update (zeros, Ke

e

9. R ter).
F.4 CTR_DRBG Example Without a Derivation Function

This exam s the previous example except that a derivation
function is n
CTR_DRBG uses AES-128. The reseed and e.
Both a personalization string and additional wed. A total of 5 internal states
are ava
routines. T 8 in
the ECB m

The nonce for instantiation () consists of a 32-bit incrementing counter
that is the i tring (Section 8.6.1 states that when a
derivation i nonce, if used, is contained in the personalization string).
The no
setting

The int d_counter, and security_strength,
wh d all other values are integers.Since prediction resistance is
always

In accordance .1, security strengths of 112 and 128 may be

tput: string status, bitstring (returned_bits, V, Key), integer resee

), then Retur
Key, reseed_counter).

2. If (

2.1 additional_input = Block_Cipher_df (additional_input, 256).

2.2 (Key, V) = Update (additional_input, Key, V).

3. tem

4. While (len (temp) < req

4.1 V = (V + 1) mod 2128.

4 2 output_block = AES_ECB_Encrypt (Key, V).

3 temp = temp || o

5. returned_bits = Leftmost (requested_number_of_bits) of

Comment: Produce a string of 256 zeros.

y, V)

8. r seed_counter = reseed_counter + 1.

eturn (“Success”, returned_bits, V, Key, reseed_coun

ple of CTR_DRBG is the same a
ot used (i.e., full entropy is always available). As in Appendix F.3, the

 prediction resistance capabilities are availabl
input are allo

ilable. For this implementation, the functions and algorithms are written as separate
he Block_Encrypt function (as specified in Section 10.4.2) uses AES-12
ode.

instantiation_nonce
nitial bits of the personalization s
funct on is used, the

nce is initialized when the DRBG is installed (e.g., by a call to the clock or by
it to a fixed value) and is incremented for each instantiation.

ernal state contains the values for V, Key, resee
ere V and Key are strings, an

 available, there is no need for prediction_resistance_flag in the internal state.

with Table 3 in Section 10.2

NIST SP 800-90 DRAFT December 2005

118

suppor
be com Table 3, the maximum size of the personalization_string is 224 bits in
order to instantiation_nonce (i.e., len
(instantiati
256 bits). In ad ze of any additional_input is 256 bits (i.e., len
(additional
F.4.1 The Upd

The update fun
F.4.2 Inst BG Without a Derivation Function

The instan hat provided in
Appendix F.3. c

• Step 2 is repl

If (len n Return (“Personalization_string too
long”, -1).

• Ste :

inst + 1.

per personalization_string.

The instan ed in
Appendix

e

 F.3.3, except that step 3 is replaced by:

ted. The definitions are the same as those provided in Appendix F.3, except that to
pliant with
 accommodate the 32-bits of the

on_nonce) + len (personalization_string) must be ≤ seedlen, where seedlen =
dition, the maximum si

_input ≤ seedlen)).
ate Function

ction is the same as that provided in Appendix F.3.1.
antiation of CTR_DR

tiate function (Instantiate_CTR_DRBG) is the same as t
2, ex ept for the following:

aced by:

(personalization_string) > 224), the

p 6 is replaced by

antiation_nonce = instantiation_nonce

sonalization_string = instantiation_nonce ||

tiate algorithm (Instantiate_algorithm) is the same as that provid
F.3.2, except that step 1 is replaced by:

t mp = len (personalization_string).

If (temp < 256), then personalization_string = personalization_string || 0256-temp.

seed_material = entropy_input ⊕ personalization_string.
F.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation Function

• The reseed function (Reseed_CTR_DRBG) is the same as that provided in
Appendix

If (len (additional_input) > 256), then Return (“Additional_input too long”).

The instantiate algorithm (Reseed_algorithm) is the same as that provided in Appendix
F.3.3, except that step 1 is replaced by:

temp = len (additional_input).

If (temp < 256), then additional_input = additional_input || 0256-temp.

seed_material = entropy_input ⊕ additional_input.

NIST SP 800-90 DRAFT December 2005

119

ate_algorithm) is the same as that provided in Appendix
replaced by:

(temp.

a consuming application to instantiate using any
of t t elliptic curve to be used is selected during instantiation in
accordan

ested_instantiation_security_strength Elliptic Curve

F.4.4 Generating Pseudorandom Bits Using CTR_DRBG

The generate function (CTR_DRBG) is the same as that provided in Appendix F.3.4,
except that step 5 is replaced by :

If (len (additional_input) > 256), then Return (“Additional_input too long”, Null).

The generate algorithm (Gener
F.3.4, except that step 2.1 is

temp = len (additional_input).

If temp < 256), then additional_input = additional_input || 0256-

F.5 Dual_EC_DRBG Example

This example of Dual_EC_DRBG allows
he hree prime curves. The

ce with the following:

requ

≤ 112 P-256

113 – 128 P-256

129 – 192 P-384

193 – 256 P-521

A r tion resistance is not available. Both a
per es are
pro as inline code within the
fun

 with
sec t
Get n e
Get_entropy_input , since the first two
parame

In a on 10.3.1, security strengths of 112, 128, 192 and 256
ma ollowing
def uncti s:

2. Output block length (outlen): See Table 4.

eseed capability is available, but predic
sonalization_string and an additional_input are allowed. A total of 10 internal stat
vided. For this implementation, the algorithms are provided
ctions.

The nonce for instantiation (instantiation_nonce) consists of a random value
uri y_strength/2 bits of entropy; the nonce is obtained by a separate call to the
_e tropy_input routine than that used to obtain the entropy input itself. Also, th

 function uses only two input parameters
ters (the min_entropy and the min_length) have the same value.

The internal state contains values for s, seedlen, p, a, b, n, P, Q, block_counter and
security_strength.

ccordance with Table 4 in Secti
y be supported. SHA-256 has been selected as the hash function. The f
initions are applicable for the instantiate, reseed and generate f on

1. highest_supported_security_strength = 256.

NIST SP 800-90 DRAFT December 2005

120

ut at instantiation and reseed =

) =

 2 × security_strength.

er_request) =

9. Reseed interval (reseed_interval) = 232 blocks.

a text message and an invalid state handle (-1) when an
ERROR is en 0

Instantiate_Dual_EC_DRBG (

Input: integer (requested_ n_security_strength), b
personalization_string

Output: string status, integ ndle.

Process:
Comment : Check the validity of the input

string

curity_strength.

urity_strength = 112; seedlen = 224; outlen = 240}

ngth ≤ 192), then

4; outlen = 368}

3. Required minimum entropy for the entropy inp
security_strength.

4. Maximum entropy input length (max _length) = 1000 bits.

5. Maximum personalization string length (max_personalization_string_length
800 bits.

6. Maximum additional input length (max_additional_input_length) = 800 bits.

7. Seed length (seedlen): =

8. Maximum number of bits per request (max_number_of_bits_p
1000 bits.

F.5.1 Instantiation of Dual_EC_DRBG

This implementation will return
countered. Hash_df is specified in Section 1 .4.1.

...):

instantiatio
.

itstring

er state_ha

parameters.

1. If (requested_instantiation_security_strength > 256) then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 800), then Return (“personalization_
too long”, -1).

Comment : Select the prime field curve in
accordance with the
requested_instantiation_se

3. If requested_instantiation_security_strength ≤ 112), then

{sec

Else if (requested_instantiation_security_strength ≤ 128), then

{security_strength = 128; seedlen = 256; outlen = 240}

Else if (requested_instantiation_security_stre

{security_strength = 192;, seedlen = 38

NIST SP 800-90 DRAFT December 2005

121

4. te elliptic curve from Appendix A using the Table in
and Q.

5. tropy_input) = Get_entropy_input (security_strength, 1000).

ut

0).

8. “Success”), then Return (“Catastrophic failure of the random nonce

Comment: Perform the instantiate algorithm.

.

ternal state and
save the initial values.

ace ().

status ≠ “Success”), then Return (status, -1).

14. internal_state (state_handle) = {s

F.5.2

The implem igned to return a text message as the status when an error is
encountered.

Reseed_Dual_EC_DRBG_Instantiation (..

Input:

Output: string

Process:

eters.

1. If ((state_handle
ailable for the

stat

Else {security_strength = 256;, seedlen = 512; outlen = 504}.

Select the appropria
Appendix F.5 to obtain the domain parameters p, a, b, n, P,

Comment: Request entropy_input.

(status, en

6. If (status ≠ “Success”), then Return (“Catastrophic failure of the entropy_inp
source:” || status, -1).

7. (status, instantiation_nonce) = Get_entropy_input (security_strength/2, 100

If (status ≠
source:” || status, -1).

9. seed_material = entropy_input || instantiation_nonce || personalization_string

10. s = Hash_df (seed_material, seedlen).

11. block_counter = 0.

Comment: Find an unused in

12. (status, state_handle) = Find_state_sp

13. If (

, seedlen, p, a, b, n, P, Q, block_counter,
security_strength}.

15. Return (“Success”, state_handle).
Reseeding a Dual_EC_DRBG Instantiation

entation is des

.):

 integer state_handle, string additional_input_string.

status.

Comment: Check the input param

te < 0) or (state_handle > 9) or (internal_sta
(state_handle).security_strength = 0)), then Return (“State not av

e_handle”).

NIST SP 800-90 DRAFT December 2005

122

2. ut too long”).

es for

3. s = internal_state (state_handle).

the appropriate entropy and bit length.

 additional_input.

aterial, seedlen).

8. internal_state.block_counter = 0.

F.5.3

The im pseudorandom bits if an error is

Dual_EC_DRBG (...):

string additional_input.

m_bits.

Comment: Check for an invalid state_handle.

state_handle < 0) or (state_handle > 9) or (internal_state (state_handle) =
0)), then Return (“State not avail

propriate state

2. state_handle).s, seedlen = internal_state

If (len (additional_input) > 800), then Return (“Additional_inp

Comment: Get the appropriate state valu
the indicated state_handle.

s, seedlen = internal_state
(state_handle).seedlen, security_strength = internal_state
(state_handle).security_strength.

Comment: Request new entropy_input with

3. (status, entropy_input) = Get_entropy_input (security_strength, 1000).

4. If (status ≠ “Success”), then Return (“Catastrophic failure of the entropy
source:”|| status).

Comment: Perform the reseed algorithm.

5. seed_material = pad8 (s) || entropy_input ||

6. s = Hash_df (seed_m

Comment: Update the changed values in the
state.

7. internal_state (state_handle).s = s.

9. Return (“Success”).
Generating Pseudorandom Bits Using Dual_EC_DRBG

plemenation returns a Null string as the
encountered.

Input: integer (state_handle, requested_security_strength, requested_no_of_bits),
bit

Output: string status, bitstring pseudorando

Process:

1. If ((
able for the state_handle”, Null).

Comment: Get the ap
values for the indicated state_handle.

s = internal_state (

NIST SP 800-90 DRAFT December 2005

123

(state_handle).Q, block_counter

 the input

3. many bits

4. If (requested_security_strength >
requested_strength”, Null).

g”,

Comment: Check whether a reseed is

(state_handle).seedlen, P = internal_state (state_handle).P, Q = internal_state
= internal_state (state_handle).block_counter.

Comment: Check the rest of
parameters.

If (requested_number_of_bits > 1000), then Return (“Too
requested”, Null).

 security_strength), then Return (“Invalid

5. If (len (additional_input) > 800), then Return (“Additional_input too lon
Null).

required.

6. If (block_counter + ⎥⎥
⎤

⎢
⎡ bits_of_number_requested > 232), then
⎢ outlen

6.1 Reseed_Dual_EC_DRBG_
additional_input).

eturn (status).

e (state_handle).s, block_counter = internal_state
lock_counter.

Comment: Execute the generate algorithm.

_input = Null) then additional_input = 0

s.

sh_df (pad8 (additional_input), seedlen).

Produce requested_no_of_bits,
outlen bits at a time:

8. temp = the Null string.

10.

11. s = ϕ(x(t ∗ P)).

Instantiation (state_handle,

6.2 If (status ≠ “Success”), then R

6.3 s = internal_stat
(state_handle).b

6.4 additional_input = Null.

 7. If (additional

Comment: additional_input set to m zeroe

Else additional_input = Ha

Comment:

9. i = 0.

 t = s ⊕ additional_input.

12. r = ϕ(x(s ∗ Q)).

NIST SP 800-90 DRAFT December 2005

124

13.

14.

15. block_counter = block_counter +

18. ate (temp, i × outlen, requested_no_of_bits).

s
in the state.

19. internal_state.s = s.

20. internal_state.block_counter = block_counter.

21. Return (“Success”, pseudorandom_bits).

 temp = temp || (rightmost outlen bits of r).

 additional_input=0seedlen. Comment: seedlen zeroes; additional_input
is added only on the first iteration.

 1.

16. i = i + 1.

17. If (len (temp) < requested_no_of_bits), then go to step 10.

 pseudorandom_bits = Trunc

Comment: Update the changed value

NIST SP 800-90 DRAFT December 2005

Appendix G: (Informative) DRBG Selection

125

Almost with the primary purpose of generating
good random bits. Instead, he typically starts with some goal that he wishes to accomplish,
then de cryptographic mechanisms, such as digital signatures or block
ciphers understand the
require
generat
inadvertently weaken the cryptographic mechanisms
this point, there are three things that may guide the designer's choice of a DRBG:

a. a set of cryptographic primitives as part of
 one of these primitives, he can

anslates to lower gate
are that must be protected against

probing and power analysis. In software, this translates to fewer lines of code to
write, test, and validate.

For example, a module that generates RSA signatures has an available hash
function, so a hash-based DRBG is a natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash
function, etc., to have certain properties. By choosing a DRBG based on similar
properties, he can minimize the number of algorithms he has to trust.

For example, an AES-based DRBG might be a good choice when a module
provides encryption with AES. Since the security of the DRBG is dependent on the
strength of AES, the module's security is not made dependent on any additional
cryptographic primitives or assumptions.

c. Multiple cryptographic primitives may be available within the system or
consuming application, but there may be restrictions that need to be addressed (e.g.,
code size or performance requirements).

The DRBGs specified in this Recommendation have different performance characteristics,
implementation issues, and security assumptions.
G.1 Hash_DRBG

Hash_DRBG is based on the use of an Approved hash function in a counter mode similar
to the counter mode specified in NIST SP 800-38A. For each Generate request, the current
value of V (a secret value in the internal state) is used as the starting counter that is
iteratively changed to generate each successive n-bit block of requested output, where n is
the number of bits in the hash function output block. At the end of the Generate request,
and before the pseudorandom output is returned to the consuming application, the secret

 no application or system designer starts

cides on some
 that can help him achieve that goal. Typically, as he begins to
ments of those cryptographic mechanisms, he learns that he will also have to
e some random bits, and that this must be done with great care, or he may

 that he has chosen to implement. At

He may already have decided to include
his implementation. By choosing a DRBG based on
minimize the cost of adding that DRBG. In hardware, this tr
count, less power consumption, and less hardw

NIST SP 800-90 DRAFT December 2005

126

value V s updated in order to prevent backtracking.

Performance. s one hash
function compu tation is

or
 a

sh
stance,

uested
sec y
entr y
Genera
Hash_
Recom

Constr own in Table 2 of Section 10.1, for each hash function, up
to 248 g 19

Resour , and the ability to perform
add n,
Ha
implem
10.1.1.

Algori
discuss
G.2 H

HM AC
constru
V, the D

rates a new Key and V, each requiring
ion.

 i

 Within a Generate request, each n-bit block of output require
tation and some additions; an additional hash function compu

required to provide the backtracking resistance. Hash_DRBG produces pseudorandom
output bits in about half the time required by HMAC_DRBG.

Security. Hash_DRBG’s security depends on the underlying hash function’s behavi
when processing a series of sequential input blocks. If the hash function is replaced by
random oracle, Hash_DRBG is secure. It is difficult to relate the properties of the ha
function required by Hash_DRBG with common properties, such as collision resi
pre-image resistance, or pseudorandomness. There are known problems with
Hash_DRBG when the DRBG is instantiated with insufficient entropy for the req

urit strength, and then later provided with enough entropy to attain the amount of
op required for the security strength, via the inclusion of additional input during a

te request. However, these problems do not affect the DRBG’s security when
DRBG is instantiated with the amount of entropy specified in this
mendation.

aints on Outputs. As sh
enerate requests may be made, each of up to 2 bits.

ces. Hash_DRBG requires access to a hash function
ition with seedlen-bit integers. Hash_DRBG uses the hash-based derivation functio
sh_df specified in Section 10.4.1 during instantiation and reseeding. Any

entation requires the storage space required for the internal state (see Section
1).

thm Choices. The choice of hash functions that may be used by Hash_DRBG is
ed in Section 10.1.
MAC_DRBG

AC_DRBG is built around the use of some approved hash function in the HM
ction. To generate pseudorandom bits from a secret key (Key) and a starting value
RBG computes

 V = HMAC (Key, V).

At the end of a generation request, the DRBG gene
one HMAC computat

Performance. HMAC_DRBG produces pseudorandom outputs considerably more slowly
than the underlying hash function processes inputs; for SHA-256, a long generate request
produces output bits at about 1/4 of the rate that the hash function can process input bits.
Each generate request also involves additional overhead equivalent to processing 2048
extra bits with SHA-256. Note, however, that hash functions are typically quite fast; few if
any consuming applications are expected to need output bits faster than HMAC_DRBG

NIST SP 800-90 DRAFT December 2005

can provide them.

127

 inputs. In general, even

e

entation for
. However, a general-purpose hash function implementation can

G is based on using an Approved block cipher algorithm in counter mode (see
y

nter; after a generate request, a new key and new
re generated.

e

end of each Generate request, work equivalent to 2, 3 or 4
nding on the choice of underlying block cipher algorithm, to

enerat s for the next Generate request.

he sense that, so long as some limits on the total number of

Security. The security of HMAC_DRBG is based on the assumption that an Approved
hash function used in the HMAC construction is a pseudorandom function family.
Informally, this just means that when an attacker doesn’t know the key used, HMAC
outputs look random, even given knowledge and control over the
relatively weak hash functions seem to be quite strong when used in the HMAC
construction. On the other hand, there is not a reduction proof from the hash function’s
collision resistance properties to the security of the DRBG; the security of HMAC_DRBG
ultimately relies on the pseudorandomness properties of the underlying hash function. Not
that the pseudorandomness of HMAC is a widely used assumption in designing, and the
HMAC_DRBG requires far less demanding properties of the underlying hash function
than Hash_DRBG.

Constraints on Outputs. As shown in Table 2 of Section 10.1, for each hash function, up
to 248 generate requests may be made, each of up to 219 bits.

Resources. HMAC_DRBG requires access to a dedicated HMAC implem
optimal performance
always be used to implement HMAC. Any implementation requires the storage space
required for the internal state (see Section 10.1.2.1).

Algorithm Choices. The choice of hash functions that may be used by HMAC_DRBG is
discussed in Section 10.1.
G.3 CTR_DRBG

CTR_DRB
SP 800-38A). At the present time, only three-key TDEA and AES are approved for use b
the Federal government for use in this DRBG. Pseudorandom outputs are generated by
encrypting successive values of a cou
starting counter value a

Performance. For large Generate requests, CTR_DRBG produces outputs at the sam
speed as the underlying block cipher algorithm encrypts data. Furthermore, CTR_DRBG
is parallelizeable. At the
encryptions is performed, depe
g e new keys and counter

Security. The security of CTR_DRBG is directly based on the security of the underlying
block cipher algorithm, in t
outputs are observed, any attack on CTR_DRBG represents an attack on the underlying
block cipher algorithm.

Constraints on Outputs. As shown in Table 3 of Section 10.2.1, for each of the three
AES key sizes, up to 248 generate requests may be made, each of up to 219 bits, with a
negligible chance of any weakness that does not represent a weakness in AES. However,
the smaller block size of TDEA imposes more constraints: each generate request is limited

NIST SP 800-90 DRAFT December 2005

128

ost 232 such requests may be made.

g

to 213 bits, and at m

Resources. CTR_DRBG may be implemented with or without a derivation function.

When a derivation function is used, CTR_DRBG can process the personalization strin
and any additional input in the same way as any other DRBG, but at a cost in performance
because of the use of the derivation function. Such an implementation may be seeded by
any Approved source of entropy input that may or may not provide full entropy.

When a derivation function is not used, CTR_DRBG is more efficient when the
personalization string and any additional input are provided, but is less flexible because the
lengths of the personalization string and additional input cannot exceed seedlen bits. Such
implementations must be seeded by a source of entropy input that provides full entropy
(e.g., an Approved co

nditioned entropy source or Approved RBG).

ection 10.2.1.1).

tputs are produced by first computing R to be the x-
nt S*P and then extracting low order bits from the x-coordinate of the

irst, note that the use of fixed base points allows a

e not required. A given

trength curves will be slower and

CTR_DRBG requires access to a block cipher algorithm, including the ability to change
keys, and the storage space required for the internal state (see S

Algorithm Choices. The choice of block cipher algorithms and key sizes that may be
used by CTR_DRBG is discussed in Section 10.2.1.
G.4 DRBGs Based on Hard Problems

The Dual_EC_DRBG generates pseudorandom outputs by extracting bits from elliptic
curve points. The secret, internal state of the DRBG is a value S that is the x-coordinate of
a point on an elliptic curve. Ou
coordinate of the poi
elliptic curve point R*Q.

Performance. Due to the elliptic curve arithmetic involved in this DRBG, this algorithm
generates pseudorandom bits more slowly than the other DRBGS in this Recommendation.
It should be noted, however, that the design of this algorithm allows for certain
performance-enhancing possibilities. F
substantial increase in the performance of this DRBG via the use of tables. By storing
multiples of the points P and Q, the elliptic curve multiplication can be accomplished via
point additions rather than multiplications, a much less expensive operation. In more
constrained environments where table storage is not an option, the use of so-called
Montgomery Coordinates of the form (X : Z) can be used as a method to increase
performance, since the y-coordinates of the computed points ar
implementation of this DRBG need not include all three of the NIST-Approved curves.
Once the designer decides upon the strength required by a given application, he can then
choose to implement the single curve that most appropriately meets this requirement. For
a common level of optimization expended, the higher s
tend toward less efficient use of output blocks. To mitigate the latter, the designer should
be aware that every distinct request for random bits, whether for two million bits or a
single bit, requires the computational expense of at least two elliptic curve point
multiplications. Applications requiring large blocks of random bits (such as IKE or SSL),
can thus be implemented most efficiently by first making a single call to the DRBG for all

NIST SP 800-90 DRAFT December 2005

129

se bits as required by the protocol.

-
 factor of

 particular instance of
e

t blocks

ed with Dual_EC_DRBG, provided that
=

at

te (see 10.3.1.1). Some optimizations require additional storage

the required bits, and then appropriately partitioning the
For applications that already have hardware or software support for elliptic curve
arithmetic, this DRBG is a natural choice, as it allows the designer to utilize existing
capabilities to generate truly high-security random numbers.

Security. The security of Dual_EC_DRBG is based on the so-called "Elliptic Curve
Discrete Logarithm Problem" that has no known attacks better than the so-called "meet-in
the-middle" attacks. For an elliptic curve defined over a field of size 2m, the work
these attacks is approximately 2m/2, so that solving this problem is computationally
infeasible for the curves in this Recommendation. The Dual_EC_DRBG is the only
DRBG in this Recommendation whose security is related to a hard problem in number
theory.

Constraints on Outputs. For any one of the three elliptic curves, a
Dual_EC_DRBG may generate at most 232 output blocks before reseeding, where the siz
of the output blocks is discussed in Section 10.3.1.4. Since the sequence of outpu
is expected to cycle in approximately sqrt(n) bits (where n is the (prime) order of the
particular elliptic curve being used), this is quite a conservative reseed interval for any one
of the three possible curves.

Resources. Any entropy input source may be us
it is capable of generating at least min_entropy bits of entropy in a string of max_length
213 bits. This DRBG also requires an appropriate hash function (see Table 4) that is used
exclusively for producing an appropriately-sized initial state from the entropy input
instantiation or reseeding. An implementation of this DRBG must also have enough
storage for the internal sta
for moderate to large tables of pre-computed values.

Algorithm Choices. The choice of appropriate elliptic curves and points used by
Dual_EC_DRBG is discussed in Appendix A.1.

NIST SP 800-90 DRAFT December 2005

Appendix H : (Informative) References

130

ate

ipher Modes of Operation - Methods and Techniques,

n

c Key Cryptography for the Financial

ublic Key Cryptography for the Financial
ervices Industry - Key Agreement and Key Transport Using Elliptic Key Cryptography.

hparlinski] Mahassni, Edwin, and Shparlinski, Igor. On the Uniformity of Distribution of
ongruential Generators over Elliptic Curves. Department of Computing, Macquarie

University, NSW 2109, Australia; {eelmaha, igor}@isc.mq.edu.qu.

Federal Information Processing Standard 140-2, Security Requirements for Cryptographic
Modules, May 25, 2001.

Federal Information Processing Standard 180-2, Secure Hash Standard (SHS), August
2002.

Federal Information Processing Standard 186-3, Digital Signature Standard (DSS), [D
to be inserted].

Federal Information Processing Standard 197, Advanced Encryption Standard (AES),
November 2001.

Federal Information Processing Standard 198, Keyed-Hash Message Authentication Code
(HMAC), March 6, 2002.

National Institute of Standards and Technology Special Publication (SP) 800-38A,
Recommendation for Block C
December 2001.

NIST Special Publication (SP) 800-57, Part 1, Recommendation for Key Management:
General, [August 2005].

NIST Special Publication (SP) 800-67, Recommendation for the Triple Data Encryptio
Algorithm (TDEA) Block Cipher, May 2004.

American National Standard (ANS) X9.62-2000, Publi
Services Industry - The Elliptic Curve Digital Signature Algorithm (ECDSA).

American National Standard (ANS) X9.63-2000, P
S

[S
C

	1 Authority
	2 Introduction
	3 Scope
	4 Terms and Definitions
	5 Symbols and Abbreviated Terms
	6 Document Organization
	7 DRBG Functional Model
	7.1 Entropy Input
	7.2 Other Inputs
	7.3 The Internal State
	7.4 The DRBG Functions
	7.5 Health Tests

	8. DRBG Concepts and General Requirements
	8.1 DRBG Functions
	8.2 DRBG Instantiations
	8.3 Internal States
	8.4 Security Strengths Supported by an Instantiation
	8.5 DRBG Boundaries
	8.6 Seeds
	8.6.1 Seed Construction for Instantiation
	8.6.2 Seed Construction for Reseeding
	8.6.3. Entropy Requirements for the Entropy Input
	8.6.4 Seed Length
	8.6.5 Entropy Input Source
	8.6.6 Entropy Input and Seed Privacy
	8.6.7 Nonce
	8.6.8 Reseeding
	8.6.9 Seed Use
	8.6.10 Seed Separation

	8.7 Other Inputs to the DRBG
	8.7.1 Personalization String
	8.7.2 Additional Input

	8.8 Prediction Resistance and Backtracking Resistance

	9 DRBG Functions
	9.1 Instantiating a DRBG
	9.2 Reseeding a DRBG Instantiation
	9.3 Generating Pseudorandom Bits Using a DRBG
	9.3.1 The Generate Function
	9.3.2 Reseeding at the End of the Seedlife
	9.3.3 Handling Prediction Resistance Requests

	9.4 Removing a DRBG Instantiation
	9.5 Self-Testing of the DRBG
	9.5.1 Testing the Instantiate Function
	9.5.2 Testing the Generate Function
	9.5.3 Testing the Reseed Function
	9.5.4 Testing the Uninstantiate Function

	9.6 Error Handling
	9.6.1 Errors Encountered During Normal Operation
	9.6.2 Errors Encountered During Self-Testing

	10 DRBG Algorithm Specifications
	10.1 Deterministic RBGs Based on Hash Functions
	Supported security strengths
	10.1.1 Hash_DRBG
	10.1.1.1 Hash_DRBG Internal State
	10.1.1.2 Instantiation of Hash_DRBG
	10.1.1.3 Reseeding a Hash_DRBG Instantiation
	10.1.1.4 Generating Pseudorandom Bits Using Hash_DRBG

	10.1.2 HMAC_DRBG (...)
	10.1.2.1 HMAC_DRBG Internal State
	10.1.2.2 The Update Function (Update)
	10.1.2.3 Instantiation of HMAC_DRBG
	10.1.2.4 Reseeding an HMAC_DRBG Instantiation
	10.1.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

	10.2 DRBGs Based on Block Ciphers
	10.2.1 CTR_DRBG
	10.2.1.1 CTR_DRBG Internal State
	10.2.1.2 The Update Function (Update)
	10.2.1.3 Instantiation of CTR_DRBG
	10.2.1.3.1 The Process Steps for Instantiation When Full Ent
	10.2.1.3.2 The Process Steps for Instantiation When a Deriva

	10.2.1.4 Reseeding a CTR_DRBG Instantiation
	10.2.1.4.1 The Process Steps for Reseeding When Full Entropy
	10.2.1.4.2 The Process Steps for Reseeding When a Derivation

	10.2.1.5 Generating Pseudorandom Bits Using CTR_DRBG

	10.3 Deterministic RBG Based on Number Theoretic Problems
	10.3.1 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)
	Supported security strengths
	10.3.1.1 Dual_EC_DRBG Internal State
	10.3.1.2 Instantiation of Dual_EC_DRBG
	10.3.1.3 Reseeding of a Dual_EC_DRBG Instantiation
	10.3.1.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

	10.4 Auxilliary Functions
	10.4.1 Derivation Function Using a Hash Function (Hash_df)
	10.4.2 Derivation Function Using a Block Cipher Algorithm (B
	10.4.3 Block_Cipher_Hash Function

	11 Assurance
	11.1 Minimal Documentation Requirements
	11.2 Implementation Validation Testing
	11.3 Health Testing
	11.3.1 Overview
	11.3.2 Known Answer Testing

	Appendix A: (Normative) Application-Specific Constants
	A.1 Constants for the Dual_EC_DRBG
	A.1.1 Curve P-256
	A.1.2 Curve P-384
	A.1.3 Curve P-521

	A.2 Using Alternative Points in the Dual_EC_DRBG()
	A.2.1 Generating Alternative P,Q
	A.2.2 Additional Self-testing Required for Alternative P,Q

	Appendix B : (Normative) Conversion and Auxilliary Routines
	B.1 Bitstring to an Integer
	B.2 Integer to a Bitstring
	B.3 Integer to an Octet String
	B.4 Octet String to an Integer
	B.5 Converting Random Numbers from/to Random Bits
	B.5.1 Converting Random Bits into a Random Number
	B.5.1.1 The Simple Discard Method
	B.5.1.2 The Complex Discard Method
	B.5.1.3 The Simple Modular Method
	B.5.1.4 The Complex Modular Method

	B.5.2 Converting a Random Number into Random Bits
	B.5.2.1 The No Skew (Variable Length Extraction) Method
	B.5.2.2 The Negligible Skew (Fixed Length Extraction) Method

	Appendix C: (Normative) Entropy and Entropy Sources
	C.1 What is Entropy ?
	C.2 Entropy Source
	C.3 Entropy Assessment
	C.4 Coin Flipping Entropy Source Example

	Appendix D: (Normative) Constructing a Random Bit Generator
	D.1 Entropy Input for a DRBG
	D.2 Availability of Entropy Input for a DRBG
	D.2.1 Using a Readily Available Entropy Input Source
	D.2.2 No Readily Available Entropy Input Source

	D.3 Persistence Considerations

	Appendix E: (Informative) Security Considerations when Extra
	E.1 Potential Bias Due to Modular Arithmetic for Curves Over
	E.2 Adjusting for the missing bit(s) of entropy in the x coo

	Appendix F: (Informative) Example Pseudocode for Each DRBG
	F.1 Hash_DRBG Example
	F.1.1 Instantiation of Hash_DRBG
	F.1.2 Reseeding a Hash_DRBG Instantiation
	F.1.3 Generating Pseudorandom Bits Using Hash_DRBG

	F.2 HMAC_DRBG Example
	F.2.1 Instantiation of HMAC_DRBG
	F.2.2 Generating Pseudorandom Bits Using HMAC_DRBG

	F.3 CTR_DRBG Example Using a Derivation Function
	F.3.1 The Update Function
	F.3.2 Instantiation of CTR_DRBG Using a Derivation Function
	F.3.3 Reseeding a CTR_DRBG Instantiation Using a Derivation
	F.3.4 Generating Pseudorandom Bits Using CTR_DRBG

	F.4 CTR_DRBG Example Without a Derivation Function
	F.4.1 The Update Function
	F.4.2 Instantiation of CTR_DRBG Without a Derivation Functio
	F.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivatio
	F.4.4 Generating Pseudorandom Bits Using CTR_DRBG

	F.5 Dual_EC_DRBG Example
	F.5.1 Instantiation of Dual_EC_DRBG
	F.5.2 Reseeding a Dual_EC_DRBG Instantiation
	F.5.3 Generating Pseudorandom Bits Using Dual_EC_DRBG

	Appendix G: (Informative) DRBG Selection
	G.1 Hash_DRBG
	G.2 HMAC_DRBG
	G.3 CTR_DRBG
	G.4 DRBGs Based on Hard Problems

	Appendix H : (Informative) References

